Pregunta
upstudy study bank question image url

Suppose \( (5,-2) \) is a point on the graph of \( y=g(x) \). (a) What point is on the graph of \( y=g(x+1)-6 \) ? (b) What point is on the graph of \( y=-5 g(x-5)+8 \) ? (c) What point is on the graph of \( y=g(5 x+20) \) ? (a) What point is on the graph of \( y=g(x+1)-6 \) ? (Type an ordered pair.)

Ask by Carroll Hodgson. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The point on the graph of \( y = g(x + 1) - 6 \) is (4, -8).

Solución

We begin by recalling that the point (5, –2) means g(5) = –2. For the graph of y = g(x + 1) – 6, we look for an x-value such that the argument of g is 5 (because we know g(5)). Set:   x + 1 = 5 ⟹ x = 4. Then, the corresponding y-value is:   y = g(4 + 1) – 6 = g(5) – 6 = –2 – 6 = –8. Thus, the point on the graph is (4, –8). Answer: (4, -8)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

If \( (5,-2) \) is a point on the graph of \( y=g(x) \), that means \( g(5) = -2 \). (a) For the transformation \( y = g(x+1) - 6 \), we first need to find the x-value that corresponds to 5. Since we are replacing \( x \) with \( x+1 \), we set \( x + 1 = 5 \), leading to \( x = 4 \). Now we plug this into the function: \( g(4 + 1) = g(5) = -2 \). Then we apply the -6 to get \( -2 - 6 = -8 \). Therefore, the point on the graph is \( (4, -8) \). (b) For the transformation \( y = -5 g(x-5) + 8 \), we need to adjust for the x-value again. Set \( x - 5 = 5 \) which gives \( x = 10 \). Now using this in the function: \( g(10 - 5) = g(5) = -2 \). We then compute the transformation: \( -5(-2) + 8 = 10 + 8 = 18 \). Thus, the point on the graph is \( (10, 18) \). (c) For \( y = g(5x + 20) \), to find the point corresponding to \( (5, -2) \), we need to solve \( 5x + 20 = 5 \). This means \( 5x = 5 - 20 \) leading to \( 5x = -15 \) or \( x = -3 \). At this value, we find: \( g(5(-3) + 20) = g(5) = -2 \). So the directed point becomes \( (-3, -2) \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad