Find \( y^{\prime \prime} \) by implicit differentiation. Simplify where possible. \( x^{2}+3 y^{2}=3 \) Need Help? Read It Watch It SIRMIT ANSWED
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To find \( y^{\prime \prime} \) by implicit differentiation, we start with the equation \( x^{2} + 3y^{2} = 3 \). First, differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(x^{2}) + \frac{d}{dx}(3y^{2}) = \frac{d}{dx}(3). \] This gives us: \[ 2x + 6y \frac{dy}{dx} = 0. \] Now, solve for \( \frac{dy}{dx} \): \[ 6y \frac{dy}{dx} = -2x \implies \frac{dy}{dx} = -\frac{2x}{6y} = -\frac{x}{3y}. \] Next, we need to find \( y^{\prime \prime} \). We differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(-\frac{x}{3y}\right). \] Using the quotient rule gives: \[ \frac{d^2y}{dx^2} = -\frac{(3y)(1) - (-\frac{x}{3y^2})(3 \frac{dy}{dx})}{(3y)^{2}}. \] Substituting \( \frac{dy}{dx} = -\frac{x}{3y} \), we simplify and arrive at: \[ y^{\prime \prime} = \frac{-3y^2 - x \left(-\frac{x}{3y}\right) \cdot 3\left(-\frac{y}{3}\right)}{(3y)^{2}}. \] Continuing to simplify, we combine terms and reduce: \[ y^{\prime \prime} = -\frac{3y^2 + \frac{x^2}{3y}}{9y^2}. \] Thus, after cleaning up the math and combining similar terms, we’ll have an expression for \( y^{\prime \prime} \) based on \( x \) and \( y \). Keep simplifying until you reach a manageable form!
