Pregunta
upstudy study bank question image url

Find \( y^{\prime \prime} \) by implicit differentiation. Simplify where possible. \( x^{2}+3 y^{2}=3 \) Need Help? Read It Watch It SIRMIT ANSWED

Ask by Barrett Bernard. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The second derivative of \( y \) with respect to \( x \) is \( \frac{d^2y}{dx^2} = -\frac{3y^{2}+x^{2}}{9y^{3}} \).

Solución

Find the second order derivative with respect to \( x \) for \( x^{2}+3y^{2}=3 \). Find the second derivative by following steps: - step0: Find the second derivative with respect to \(x\): \(x^{2}+3y^{2}=3\) - step1: Rewrite the expression: \(\frac{dy}{dx}=-\frac{x}{3y}\) - step2: Take the derivative: \(\frac{d}{dx}\left(\frac{dy}{dx}\right)=\frac{d}{dx}\left(-\frac{x}{3y}\right)\) - step3: Calculate the derivative: \(\frac{d^2y}{dx^2}=\frac{d}{dx}\left(-\frac{x}{3y}\right)\) - step4: Use differentiation rules: \(\frac{d^2y}{dx^2}=-\frac{\frac{d}{dx}\left(x\right)\times 3y-x\times \frac{d}{dx}\left(3y\right)}{\left(3y\right)^{2}}\) - step5: Calculate the derivative: \(\frac{d^2y}{dx^2}=-\frac{1\times 3y-x\times \frac{d}{dx}\left(3y\right)}{\left(3y\right)^{2}}\) - step6: Calculate the derivative: \(\frac{d^2y}{dx^2}=-\frac{1\times 3y-x\times 3\frac{dy}{dx}}{\left(3y\right)^{2}}\) - step7: Calculate: \(\frac{d^2y}{dx^2}=-\frac{3y-x\times 3\frac{dy}{dx}}{\left(3y\right)^{2}}\) - step8: Calculate: \(\frac{d^2y}{dx^2}=-\frac{3y-3x\frac{dy}{dx}}{\left(3y\right)^{2}}\) - step9: Calculate: \(\frac{d^2y}{dx^2}=-\frac{3y-3x\frac{dy}{dx}}{9y^{2}}\) - step10: Calculate: \(\frac{d^2y}{dx^2}=-\frac{y-x\frac{dy}{dx}}{3y^{2}}\) - step11: Substitute back: \(\frac{d^2y}{dx^2}=-\frac{y-x\left(-\frac{x}{3y}\right)}{3y^{2}}\) - step12: Calculate: \(\frac{d^2y}{dx^2}=-\frac{3y^{2}+x^{2}}{9y^{3}}\) The second derivative of \( y \) with respect to \( x \) is \( \frac{d^2y}{dx^2} = -\frac{3y^{2}+x^{2}}{9y^{3}} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find \( y^{\prime \prime} \) by implicit differentiation, we start with the equation \( x^{2} + 3y^{2} = 3 \). First, differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(x^{2}) + \frac{d}{dx}(3y^{2}) = \frac{d}{dx}(3). \] This gives us: \[ 2x + 6y \frac{dy}{dx} = 0. \] Now, solve for \( \frac{dy}{dx} \): \[ 6y \frac{dy}{dx} = -2x \implies \frac{dy}{dx} = -\frac{2x}{6y} = -\frac{x}{3y}. \] Next, we need to find \( y^{\prime \prime} \). We differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(-\frac{x}{3y}\right). \] Using the quotient rule gives: \[ \frac{d^2y}{dx^2} = -\frac{(3y)(1) - (-\frac{x}{3y^2})(3 \frac{dy}{dx})}{(3y)^{2}}. \] Substituting \( \frac{dy}{dx} = -\frac{x}{3y} \), we simplify and arrive at: \[ y^{\prime \prime} = \frac{-3y^2 - x \left(-\frac{x}{3y}\right) \cdot 3\left(-\frac{y}{3}\right)}{(3y)^{2}}. \] Continuing to simplify, we combine terms and reduce: \[ y^{\prime \prime} = -\frac{3y^2 + \frac{x^2}{3y}}{9y^2}. \] Thus, after cleaning up the math and combining similar terms, we’ll have an expression for \( y^{\prime \prime} \) based on \( x \) and \( y \). Keep simplifying until you reach a manageable form!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad