(b) Simplify the following: \( \begin{array}{lll}\text { (1) } 2^{x} \cdot 2^{x} & \text { (2) }\left(2^{5}\right)^{x} & \text { (3) }\left(3^{x}\right)^{3} \\ \text { (4) } 2^{x} \cdot 2^{3} & \text { (5) }\left(5^{3} \cdot 3^{5}\right)^{x} & \text { (6) } 9^{x} \cdot 3^{2 x} \\ \text { (7) } 81^{x} \cdot 27^{2 x} & \text { (8) } \frac{5^{x} \cdot 5^{x}}{25^{x}} & \text { (9) } \frac{\left(2^{x}\right)^{3} \cdot 2^{x}}{16^{x}} \\ \text { (10) } \frac{7^{x} \cdot 7^{2 x}}{\left(7^{2} \cdot 7\right)^{x}} & \text { (11) } \frac{25 \cdot 9^{x}}{3^{x} \cdot 3^{x} \cdot 5} & \text { (12) } \frac{\left(2^{x}\right)^{3} \cdot 27^{x}}{8^{x} \cdot\left(3^{2}\right)^{x} \cdot 3^{x}} \\ \text { (13) } \frac{12^{x} \cdot 3^{-x}}{2 \cdot 4^{x}} & \text { (14) } \frac{32^{x}}{4^{x}} & \end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
(1) To simplify \( 2^{x} \cdot 2^{x} \), we can use the property of exponents that states \( a^m \cdot a^n = a^{m+n} \). Here, \( 2^{x} \cdot 2^{x} = 2^{x+x} = 2^{2x} \). (2) In \( \left(2^{5}\right)^{x} \), we can apply another exponent rule. This time, \( (a^m)^n = a^{m \cdot n} \). Therefore, \( \left(2^{5}\right)^{x} = 2^{5x} \). Keep those rules in mind, they are very handy for simplifying expressions with exponents!
