Pregunta
upstudy study bank question image url

Mathematics/ Investigation NSC - Grade 12 NW/ Feb 2025 3 PART A INVESTIGATING INFINITE GEOMETRIC SERIES RESOURCES: CALCULATOR, A4 PAPER. WHAT IS THE SUM OF AN INFINITE GEOMETRIC SERIES? QUESTION 1 1.1 Given: \( \mathrm{S}_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \) 1.1.1 Write \( S_{n} \) in expanded form (1) 1.1.2 Which term in 1.1 .1 is affected by the number of terms in the series? (1) Consider \( r^{n} \) (write answer in scientific notation form where necessary) 1.2 CASE 1: \( r>1 \) 1.2.1 If \( r=1,001 \) determine the values of (a) \( r^{200} \) and \( S_{200} \) (b) \( r^{20000} \) and \( \mathrm{S}_{20000} \) (2) 1.2.2 Determine \( r^{200} \) and \( \mathrm{S}_{200} \) if: (a) \( r=\frac{5}{2} \) (b) \( r=3 \) (2) 1.2.3 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.3 CASE 2: \( r<-1 \) 1.3.1 If \( r=-1,001 \), determine the value of \( r^{n} \) if (a) \( n=9999 \) (b) \( n=10000 \)

Ask by Clarke Savage. in South Africa
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**Investigating Infinite Geometric Series** 1. **Sum of an Infinite Geometric Series:** - The sum \( S \) of an infinite geometric series is given by: \[ S = \frac{a}{1 - r} \] where \( a \) is the first term and \( |r| < 1 \). 2. **Case 1: \( r > 1 \)** - As \( n \) increases, \( r^n \) grows without bound. - Therefore, the sum \( S_n \) also grows without bound as \( n \to \infty \). 3. **Case 2: \( r < -1 \)** - For odd \( n \), \( r^n \) is negative. - For even \( n \), \( r^n \) is positive. - The magnitude of \( r^n \) increases as \( n \) increases. **Conclusion:** - For \( |r| < 1 \), the infinite geometric series converges to \( \frac{a}{1 - r} \). - For \( |r| \geq 1 \), the series diverges, and the sum does not approach a finite value as \( n \to \infty \).

Solución

Below is one acceptable worked‐out solution. (Some numerical answers have been rounded to an appropriate number of significant figures.) It is assumed that the first term is a (and in parts where a number is not specified we assume a remains as a constant, so in many cases you may take a = 1 for numerical evaluation). ────────────────────────────── 1.1 Expanded Form The formula for the sum of a geometric series is   Sₙ = a (rⁿ – 1)/(r – 1). 1.1.1 To expand Sₙ we note that   a (rⁿ – 1) = a (r – 1)(1 + r + r² + ⋯ + rⁿ⁻¹). Thus, equivalently,   Sₙ = a + a·r + a·r² + … + a·rⁿ⁻¹. 1.1.2 In the expanded form, the term that “knows” how many terms are there is the last term, namely a·rⁿ⁻¹; equivalently, in the compact formula the factor rⁿ (in the numerator) is affected by the number of terms n. ────────────────────────────── 1.2 CASE 1: r > 1 For the following, when a numerical value is required, we often assume a = 1. 1.2.1 Given r = 1.001  (a) For n = 200:   • Compute r²⁰⁰ = (1.001)²⁰⁰.    A way to approximate is to use logarithms:     ln[(1.001)²⁰⁰] = 200·ln(1.001) ≈ 200·0.001 = 0.2.    So, r²⁰⁰ ≈ e^(0.2) ≈ 1.2214  (≈ 1.22×10⁰ in sci. notation).   • Then     S₂₀₀ = (r²⁰⁰ – 1)/(1.001 – 1) ≈ (1.2214 – 1)/0.001 = 0.2214/0.001 = 221.4.  (b) For n = 20,000:   • First, r^(20000) = (1.001)^(20000).    Again, ln[(1.001)^(20000)] = 20000·ln(1.001) ≈ 20000·0.001 = 20.    Thus, r^(20000) ≈ e^(20) ≈ 4.85×10⁸.   • Then,    S₂₀₀₀₀ = (r^(20000) – 1)/(1.001 – 1) ≈ (4.85×10⁸ – 1)/0.001.    Since 1 is negligible compared to 4.85×10⁸,    S₂₀₀₀₀ ≈ 4.85×10⁸/0.001 = 4.85×10¹¹. ────────────────────────────── 1.2.2 Determine r²⁰⁰ and S₂₀₀ if  (a) r = 5/2 = 2.5   • To compute r²⁰⁰ = (2.5)²⁰⁰, use logarithms:    log₁₀(2.5) ≈ 0.39794 so that    log₁₀((2.5)²⁰⁰) ≈ 200 × 0.39794 = 79.588.    Thus, (2.5)²⁰⁰ ≈ 10^(79.588) which can be written approximately as ≈ 3.88×10⁷⁹.   • Then     S₂₀₀ = ((2.5)²⁰⁰ – 1)/(2.5 – 1) ≈ (3.88×10⁷⁹)/(1.5) ≈ 2.59×10⁷⁹.    (The “–1” is negligible in comparison with 3.88×10⁷⁹.)  (b) r = 3   • Similarly, r²⁰⁰ = 3²⁰⁰.    Since log₁₀(3) ≈ 0.4771, we have    log₁₀(3²⁰⁰) ≈ 200 × 0.4771 = 95.42.    Thus, 3²⁰⁰ ≈ 10^(95.42) ≈ 2.63×10⁹⁵.   • Then,    S₂₀₀ = (3²⁰⁰ – 1)/(3 – 1) ≈ (2.63×10⁹⁵)/(2) ≈ 1.315×10⁹⁵. ────────────────────────────── 1.2.3 Conjecture as n → ∞ for r > 1 Notice that as n increases without bound:   • rⁿ grows very rapidly (in fact, rⁿ → ∞ when r > 1).   • Consequently, Sₙ = a (rⁿ – 1)/(r – 1) also increases without bound (approaching infinity). Conjecture: For any r > 1, as n → ∞, both rⁿ and Sₙ tend to infinity. ────────────────────────────── 1.3 CASE 2: r < –1 1.3.1 Given r = –1.001, determine rⁿ for:  (a) n = 9999   Since n is odd, the sign will be negative.   Compute |r|ⁿ = (1.001)^(9999).   Using ln approximation: ln(1.001) ≈ 0.001 so that    ln[(1.001)^(9999)] ≈ 9999 × 0.001 = 9.999.   Thus, (1.001)^(9999) ≈ e^(9.999) ≈ 2.20×10⁴.   Therefore, r^(9999) ≈ –2.20×10⁴.  (b) n = 10000   Now n is even so the negative sign is lost.   |r|^(10000) = (1.001)^(10000).   Approximate: ln[(1.001)^(10000)] ≈ 10000 × 0.001 = 10, so that   (1.001)^(10000) ≈ e^(10) ≈ 2.20×10⁴.   Thus, r^(10000) ≈ +2.20×10⁴. ────────────────────────────── Note: • When writing answers in scientific notation, one might write, for example, 1.2214 as 1.22×10⁰ and 4.85×10⁸ as 4.85×10⁸. • Where rounding is involved, the level of accuracy depends on your instructions; the above provides one acceptable level. This completes one acceptable investigation for this part of the investigation into infinite geometric series.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

The concept of infinite geometric series has an intriguing historical backdrop, tracing its roots to mathematicians like Archimedes and later, Brahmagupta in ancient India, who explored the nature of series and limits. It wasn't until the 17th century and the work of Isaac Newton and John Wallis that the formal notation and concept of convergence began to form, leading to a deeper understanding of series that we utilize today. This historical journey reflects the evolution of mathematics from practical applications to the abstract theories we admire now. In real-world applications, infinite geometric series can be incredibly useful. For instance, in finance, they help determine the value of investments that grow at a consistent rate, like annuities or certain types of loans. Similarly, in computer science, algorithms can often be optimized using concepts from geometric series, particularly when analyzing recursive functions or calculating resource consumption in algorithms. Understanding these concepts not only sharpens mathematical skills but also enhances problem-solving across various fields!

preguntas relacionadas

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 \text { ? } \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. 1.6.7 Explain why these areas form a geometric seauence
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad