Pregunta
upstudy study bank question image url

4. \( y=\sqrt{x} \) a \( x \geq 0 \) (b) \( \{x \in \mathbf{R} \mid x \neq 0\} \) (c) \( \{x \in \mathbf{R} \mid x>0\} \) (d) \( \{x \in \mathbf{R} \mid x \leq 0\} \)

Ask by Lawson Campos. in Mexico
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

El dominio de la función \( y = \sqrt{x} \) es \( x \geq 0 \).

Solución

La función y = √x está definida únicamente para valores de x que sean mayores o iguales a 0, ya que la raíz cuadrada de un número negativo no produce un número real. Por lo tanto, el dominio de la función es: a) x ≥ 0 Las demás opciones no cumplen con esta propiedad.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that the equation \( y = \sqrt{x} \) has quite a storied history dating back to ancient civilizations? Mathematicians in ancient India and Greece were already exploring the properties of square roots, laying the groundwork for modern algebra. The use of \( y = \sqrt{x} \) symbolizes the pursuit of understanding relationships between variables, revealing how changes in \( x \) directly influence the output \( y \), especially in geometry where the graph of this function is a classic parabolic shape! As you work with this function, be cautious of some common pitfalls, especially when considering its domain. For instance, choosing \( x < 0 \) can lead to errors, as the square root of negative numbers isn't defined in real numbers. Always ensure you analyze the given sets carefully—while the natural domain of \( y = \sqrt{x} \) is \( x \geq 0 \), attempting to take the square root of negative values will lead to complex numbers, completely changing the context of your problem!

preguntas relacionadas

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 \text { ? } \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. 1.6.7 Explain why these areas form a geometric seauence
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad