Pregunta
upstudy study bank question image url

2.1 Use Descartes' Rule of Signs to describe all possibilities for the number of positive, negative and imaginary zeros of \( P(x) \), where \[ P(x)=4 x^{3}-3 x^{2}-7 x+9 \] (You may summarise your answer in the form of a table.)

Ask by Evans Long. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

By Descartes’ Rule of Signs, the polynomial \( P(x) = 4x³ - 3x² - 7x + 9 \) has either 2 or 0 positive real zeros and exactly 1 negative real zero. Therefore, the number of imaginary zeros is either 0 or 2, respectively.

Solución

We begin by applying Descartes’ Rule of Signs to P(x):  P(x) = 4x³ – 3x² – 7x + 9 Step 1. Count sign changes for positive zeros: • The coefficients are: +4, –3, –7, +9.  - Transition from +4 to –3 is one sign change.  - Transition from –3 to –7 has no sign change (both are negative).  - Transition from –7 to +9 is a second sign change. • So there are 2 sign changes. Thus, the number of positive real zeros is either 2 or 0 (2, minus an even number). Step 2. Count sign changes for negative zeros: • Substitute x = –y to obtain P(–x):  P(–x) = 4(–x)³ – 3(–x)² – 7(–x) + 9       = –4x³ – 3x² + 7x + 9 • The coefficients then are: –4, –3, +7, +9.  - –4 to –3: no sign change (both negative).  - –3 to +7: one sign change.  - +7 to +9: no sign change (both positive). • So there is 1 sign change. Hence, the number of negative real zeros is exactly 1. Step 3. Determine the number of imaginary (non‐real complex) zeros: • Since P(x) is a polynomial of degree 3, there must be exactly 3 zeros (counted with multiplicity). • Two cases arise:  Case 1: If there are 2 positive and 1 negative real zero, then there are 0 non‐real (imaginary) zeros.  Case 2: If there are 0 positive and 1 negative real zero, then the other 2 (complex conjugate) zeros must be non‐real. Summarized in a table: -----------------------------------------------------         | Positive | Negative | Imaginary ----------------------------------------------------- Case 1   | 2 | 1 | 0 Case 2   | 0 | 1 | 2 ----------------------------------------------------- Thus, by Descartes’ Rule of Signs for P(x) = 4x³ – 3x² – 7x + 9, the zeros can either be 2 positive, 1 negative, and 0 imaginary or 0 positive, 1 negative, and 2 imaginary (which, by the Conjugate Root Theorem, are a complex conjugate pair).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the number of positive, negative, and imaginary zeros of the polynomial \( P(x) = 4x^3 - 3x^2 - 7x + 9 \), we can apply Descartes' Rule of Signs. **Positive Zeros:** First, we evaluate \( P(x) \): - The polynomial is \( 4x^3 - 3x^2 - 7x + 9 \). - The sign changes are: - From \( 4 \) (positive) to \( -3 \) (negative) → 1 change - From \( -3 \) (negative) to \( -7 \) (negative) → 0 changes - From \( -7 \) (negative) to \( +9 \) (positive) → 1 change Total sign changes for \( P(x) \): 2 According to Descartes' Rule of Signs, the number of positive zeros could be 2 or 0. **Negative Zeros:** Next, we evaluate \( P(-x) \): \[ P(-x) = 4(-x)^3 - 3(-x)^2 - 7(-x) + 9 = -4x^3 - 3x^2 + 7x + 9 = - (4x^3 + 3x^2 - 7x - 9) \] - The polynomial is \( -4x^3 - 3x^2 + 7x + 9 \). - The sign changes are: - From \( -4 \) (negative) to \( -3 \) (negative) → 0 changes - From \( -3 \) (negative) to \( +7 \) (positive) → 1 change - From \( +7 \) (positive) to \( +9 \) (positive) → 0 changes Total sign changes for \( P(-x) \): 1 Thus, the number of negative zeros is 1. **Imaginary Zeros:** By the Fundamental Theorem of Algebra, the total degree of the polynomial \( P(x) \) is 3. Therefore, since we have found the possibilities of positive and negative zeros, we need to consider the imaginary zeros as well. Table Summary: | Type | Number of Zeros | |---------------|-----------------| | Positive Zeros| 2 or 0 | | Negative Zeros| 1 | | Imaginary Zeros| 0 or 2 | In conclusion, there could be 2 positive zeros or none, 1 negative zero, and potentially 0 or 2 imaginary zeros, making for a dynamic and intriguing set of possibilities!

preguntas relacionadas

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 \text { ? } \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. 1.6.7 Explain why these areas form a geometric seauence
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad