Responder
Here are the evaluated results for each expression:
1. \( a \approx -0.471 \)
2. \( b = 0.5 \)
3. \( c \approx 1.89 \)
4. \( d = \frac{\sqrt{2}}{4} - 81n^{2} \)
5. \( e \approx 93.61 \)
6. \( f = 2 \left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)^{2} - 1 \)
7. \( g = 19 - 8y^{2} \)
8. \( h = 1 \)
If you need more detailed calculations or further simplifications, feel free to ask!
Solución
Let's evaluate each expression step by step, simplifying them where possible.
### 1. \( a = \sin(10^{\circ}) \cos(30^{\circ}) \)
Using the known values:
- \( \cos(30^{\circ}) = \frac{\sqrt{3}}{2} \)
Thus, we can express \( a \) as:
\[
a = \sin(10^{\circ}) \cdot \frac{\sqrt{3}}{2}
\]
### 2. \( b = 1 - 2 \sin^{2}(30^{\circ}) \)
Using the known value:
- \( \sin(30^{\circ}) = \frac{1}{2} \)
Thus, we can express \( b \) as:
\[
b = 1 - 2 \left(\frac{1}{2}\right)^{2} = 1 - 2 \cdot \frac{1}{4} = 1 - \frac{1}{2} = \frac{1}{2}
\]
### 3. \( c = 2.52 \cos(150^{\circ}) \cdot \sin(300^{\circ}) \)
Using the known values:
- \( \cos(150^{\circ}) = -\frac{\sqrt{3}}{2} \)
- \( \sin(300^{\circ}) = -\frac{\sqrt{3}}{2} \)
Thus, we can express \( c \) as:
\[
c = 2.52 \cdot \left(-\frac{\sqrt{3}}{2}\right) \cdot \left(-\frac{\sqrt{3}}{2}\right) = 2.52 \cdot \frac{3}{4} = \frac{7.56}{4} = 1.89
\]
### 4. \( d = \cos^{3}(45^{\circ}) - 81 n^{2} \)
Using the known value:
- \( \cos(45^{\circ}) = \frac{\sqrt{2}}{2} \)
Thus, we can express \( d \) as:
\[
d = \left(\frac{\sqrt{2}}{2}\right)^{3} - 81 n^{2} = \frac{2\sqrt{2}}{8} - 81 n^{2} = \frac{\sqrt{2}}{4} - 81 n^{2}
\]
### 5. \( e = 242 \sin(22.5^{\circ}) - \cos(22^{\circ}) \)
Using the known value:
- \( \sin(22.5^{\circ}) = \frac{\sqrt{2 - \sqrt{2}}}{2} \)
Thus, we can express \( e \) as:
\[
e = 242 \cdot \frac{\sqrt{2 - \sqrt{2}}}{2} - \cos(22^{\circ})
\]
### 6. \( f = 2 \cos^{2}(15^{\circ}) - 1 \)
Using the known value:
- \( \cos(15^{\circ}) = \frac{\sqrt{6} + \sqrt{2}}{4} \)
Thus, we can express \( f \) as:
\[
f = 2 \left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)^{2} - 1
\]
### 7. \( g = 4 - 8y^{2} + 15 \)
This simplifies directly to:
\[
g = 19 - 8y^{2}
\]
### 8. \( h = 4 \sin(75^{\circ}) \cdot \cos(75^{\circ}) \)
Using the known identity:
\[
\sin(75^{\circ}) = \cos(15^{\circ})
\]
Thus, we can express \( h \) as:
\[
h = 4 \cdot \sin(75^{\circ}) \cdot \cos(75^{\circ}) = 2 \cdot \sin(150^{\circ}) = 2 \cdot \frac{1}{2} = 1
\]
Now, let's evaluate the expressions that require numerical calculations. I will proceed to calculate the numerical values for \( a, c, e, f, \) and \( h \).
Calculate the value by following steps:
- step0: Calculate:
\(2\left(\frac{\left(\sqrt{6}+\sqrt{2}\right)}{4}\right)^{2}-1\)
- step1: Remove the parentheses:
\(2\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)^{2}-1\)
- step2: Multiply the terms:
\(\frac{2+\sqrt{3}}{2}-1\)
- step3: Reduce fractions to a common denominator:
\(\frac{2+\sqrt{3}}{2}-\frac{2}{2}\)
- step4: Transform the expression:
\(\frac{2+\sqrt{3}-2}{2}\)
- step5: Remove the opposites:
\(\frac{\sqrt{3}}{2}\)
Calculate or simplify the expression \( \sin(10) * (\sqrt(3)/2) \).
Calculate the value by following steps:
- step0: Calculate:
\(\sin\left(10\right)\left(\frac{\sqrt{3}}{2}\right)\)
- step1: Remove the parentheses:
\(\sin\left(10\right)\times \frac{\sqrt{3}}{2}\)
- step2: Multiply:
\(\frac{\sin\left(10\right)\times \sqrt{3}}{2}\)
- step3: Multiply:
\(\frac{\sqrt{3}\times \sin\left(10\right)}{2}\)
- step4: Calculate the trigonometric value:
\(-0.471136\)
Calculate or simplify the expression \( 242 * (\sqrt(2 - \sqrt(2))/2) - \cos(22) \).
Calculate the value by following steps:
- step0: Calculate:
\(242\left(\frac{\sqrt{2-\sqrt{2}}}{2}\right)-\cos\left(22\right)\)
- step1: Remove the parentheses:
\(242\times \frac{\sqrt{2-\sqrt{2}}}{2}-\cos\left(22\right)\)
- step2: Reduce the numbers:
\(121\sqrt{2-\sqrt{2}}-\cos\left(22\right)\)
- step3: Calculate the trigonometric value:
\(93.609351\)
Here are the evaluated results for the expressions:
### 1. \( a = \sin(10^{\circ}) \cos(30^{\circ}) \)
\[
a \approx -0.471136
\]
### 2. \( b = 1 - 2 \sin^{2}(30^{\circ}) \)
\[
b = \frac{1}{2}
\]
### 3. \( c = 2.52 \cos(150^{\circ}) \cdot \sin(300^{\circ}) \)
\[
c \approx 1.89
\]
### 4. \( d = \cos^{3}(45^{\circ}) - 81 n^{2} \)
\[
d = \frac{\sqrt{2}}{4} - 81 n^{2}
\]
### 5. \( e = 242 \sin(22.5^{\circ}) - \cos(22^{\circ}) \)
\[
e \approx 93.609351
\]
### 6. \( f = 2 \cos^{2}(15^{\circ}) - 1 \)
\[
f = 2 \left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)^{2} - 1
\]
### 7. \( g = 4 - 8y^{2} + 15 \)
\[
g = 19 - 8y^{2}
\]
### 8. \( h = 4 \sin(75^{\circ}) \cdot \cos(75^{\circ}) \)
\[
h = 1
\]
### Summary of Results:
- \( a \approx -0.471136 \)
- \( b = \frac{1}{2} \)
- \( c \approx 1.89 \)
- \( d = \frac{\sqrt{2}}{4} - 81 n^{2} \)
- \( e \approx 93.609351 \)
- \( f = 2 \left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)^{2} - 1 \)
- \( g = 19 - 8y^{2} \)
- \( h = 1 \)
If you need further calculations or simplifications for any specific expression, please let me know!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución