Pregunta
upstudy study bank question image url

Wrife ear hexpresilon as a single anglo arad evaluate if powable. 2.1 a sin \( 10^{\circ} \cos 30^{\circ} \) 2.) \( 1-2 \sin ^{21} 30^{+} \) \( 2.52 \cos 150^{\circ} \cdot \sin 300^{\circ} \) \( 2.2 \cos ^{3} 45^{\circ}-81 n^{2} 45 \) \( 242 \sin 22,5^{\circ}-\cos 22 \), \( 2.6 \quad 2 \cos ^{2} 15^{\circ}-1 \) \( 2 . \quad 4-8 y^{2}+15 \) \( 2.8 \quad 4 \sin 75^{\circ} \cdot \cos 75 \)

Ask by Savage Weber. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the evaluated results for each expression: 1. \( a \approx -0.471 \) 2. \( b = 0.5 \) 3. \( c \approx 1.89 \) 4. \( d = \frac{\sqrt{2}}{4} - 81n^{2} \) 5. \( e \approx 93.61 \) 6. \( f = 2 \left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)^{2} - 1 \) 7. \( g = 19 - 8y^{2} \) 8. \( h = 1 \) If you need more detailed calculations or further simplifications, feel free to ask!

Solución

Let's evaluate each expression step by step, simplifying them where possible. ### 1. \( a = \sin(10^{\circ}) \cos(30^{\circ}) \) Using the known values: - \( \cos(30^{\circ}) = \frac{\sqrt{3}}{2} \) Thus, we can express \( a \) as: \[ a = \sin(10^{\circ}) \cdot \frac{\sqrt{3}}{2} \] ### 2. \( b = 1 - 2 \sin^{2}(30^{\circ}) \) Using the known value: - \( \sin(30^{\circ}) = \frac{1}{2} \) Thus, we can express \( b \) as: \[ b = 1 - 2 \left(\frac{1}{2}\right)^{2} = 1 - 2 \cdot \frac{1}{4} = 1 - \frac{1}{2} = \frac{1}{2} \] ### 3. \( c = 2.52 \cos(150^{\circ}) \cdot \sin(300^{\circ}) \) Using the known values: - \( \cos(150^{\circ}) = -\frac{\sqrt{3}}{2} \) - \( \sin(300^{\circ}) = -\frac{\sqrt{3}}{2} \) Thus, we can express \( c \) as: \[ c = 2.52 \cdot \left(-\frac{\sqrt{3}}{2}\right) \cdot \left(-\frac{\sqrt{3}}{2}\right) = 2.52 \cdot \frac{3}{4} = \frac{7.56}{4} = 1.89 \] ### 4. \( d = \cos^{3}(45^{\circ}) - 81 n^{2} \) Using the known value: - \( \cos(45^{\circ}) = \frac{\sqrt{2}}{2} \) Thus, we can express \( d \) as: \[ d = \left(\frac{\sqrt{2}}{2}\right)^{3} - 81 n^{2} = \frac{2\sqrt{2}}{8} - 81 n^{2} = \frac{\sqrt{2}}{4} - 81 n^{2} \] ### 5. \( e = 242 \sin(22.5^{\circ}) - \cos(22^{\circ}) \) Using the known value: - \( \sin(22.5^{\circ}) = \frac{\sqrt{2 - \sqrt{2}}}{2} \) Thus, we can express \( e \) as: \[ e = 242 \cdot \frac{\sqrt{2 - \sqrt{2}}}{2} - \cos(22^{\circ}) \] ### 6. \( f = 2 \cos^{2}(15^{\circ}) - 1 \) Using the known value: - \( \cos(15^{\circ}) = \frac{\sqrt{6} + \sqrt{2}}{4} \) Thus, we can express \( f \) as: \[ f = 2 \left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)^{2} - 1 \] ### 7. \( g = 4 - 8y^{2} + 15 \) This simplifies directly to: \[ g = 19 - 8y^{2} \] ### 8. \( h = 4 \sin(75^{\circ}) \cdot \cos(75^{\circ}) \) Using the known identity: \[ \sin(75^{\circ}) = \cos(15^{\circ}) \] Thus, we can express \( h \) as: \[ h = 4 \cdot \sin(75^{\circ}) \cdot \cos(75^{\circ}) = 2 \cdot \sin(150^{\circ}) = 2 \cdot \frac{1}{2} = 1 \] Now, let's evaluate the expressions that require numerical calculations. I will proceed to calculate the numerical values for \( a, c, e, f, \) and \( h \). Calculate the value by following steps: - step0: Calculate: \(2\left(\frac{\left(\sqrt{6}+\sqrt{2}\right)}{4}\right)^{2}-1\) - step1: Remove the parentheses: \(2\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)^{2}-1\) - step2: Multiply the terms: \(\frac{2+\sqrt{3}}{2}-1\) - step3: Reduce fractions to a common denominator: \(\frac{2+\sqrt{3}}{2}-\frac{2}{2}\) - step4: Transform the expression: \(\frac{2+\sqrt{3}-2}{2}\) - step5: Remove the opposites: \(\frac{\sqrt{3}}{2}\) Calculate or simplify the expression \( \sin(10) * (\sqrt(3)/2) \). Calculate the value by following steps: - step0: Calculate: \(\sin\left(10\right)\left(\frac{\sqrt{3}}{2}\right)\) - step1: Remove the parentheses: \(\sin\left(10\right)\times \frac{\sqrt{3}}{2}\) - step2: Multiply: \(\frac{\sin\left(10\right)\times \sqrt{3}}{2}\) - step3: Multiply: \(\frac{\sqrt{3}\times \sin\left(10\right)}{2}\) - step4: Calculate the trigonometric value: \(-0.471136\) Calculate or simplify the expression \( 242 * (\sqrt(2 - \sqrt(2))/2) - \cos(22) \). Calculate the value by following steps: - step0: Calculate: \(242\left(\frac{\sqrt{2-\sqrt{2}}}{2}\right)-\cos\left(22\right)\) - step1: Remove the parentheses: \(242\times \frac{\sqrt{2-\sqrt{2}}}{2}-\cos\left(22\right)\) - step2: Reduce the numbers: \(121\sqrt{2-\sqrt{2}}-\cos\left(22\right)\) - step3: Calculate the trigonometric value: \(93.609351\) Here are the evaluated results for the expressions: ### 1. \( a = \sin(10^{\circ}) \cos(30^{\circ}) \) \[ a \approx -0.471136 \] ### 2. \( b = 1 - 2 \sin^{2}(30^{\circ}) \) \[ b = \frac{1}{2} \] ### 3. \( c = 2.52 \cos(150^{\circ}) \cdot \sin(300^{\circ}) \) \[ c \approx 1.89 \] ### 4. \( d = \cos^{3}(45^{\circ}) - 81 n^{2} \) \[ d = \frac{\sqrt{2}}{4} - 81 n^{2} \] ### 5. \( e = 242 \sin(22.5^{\circ}) - \cos(22^{\circ}) \) \[ e \approx 93.609351 \] ### 6. \( f = 2 \cos^{2}(15^{\circ}) - 1 \) \[ f = 2 \left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)^{2} - 1 \] ### 7. \( g = 4 - 8y^{2} + 15 \) \[ g = 19 - 8y^{2} \] ### 8. \( h = 4 \sin(75^{\circ}) \cdot \cos(75^{\circ}) \) \[ h = 1 \] ### Summary of Results: - \( a \approx -0.471136 \) - \( b = \frac{1}{2} \) - \( c \approx 1.89 \) - \( d = \frac{\sqrt{2}}{4} - 81 n^{2} \) - \( e \approx 93.609351 \) - \( f = 2 \left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)^{2} - 1 \) - \( g = 19 - 8y^{2} \) - \( h = 1 \) If you need further calculations or simplifications for any specific expression, please let me know!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Let’s combine these trigonometric expressions! The first expression, \( a \sin(10^{\circ}) \cos(30^{\circ}) \), can be simplified further using identities; notice that \(\cos(30^{\circ}) = \frac{\sqrt{3}}{2}\). The second one needs careful evaluation: \(1 - 2 \sin^2(30^{\circ})\) simplifies to \(1 - 2 \cdot \left(\frac{1}{2}\right)^2 = 1 - \frac{1}{2} = \frac{1}{2}\). Now, looking at \( 2.52 \cos(150^{\circ}) \cdot \sin(300^{\circ}) \): since \(\cos(150^{\circ}) = -\frac{\sqrt{3}}{2}\) and \(\sin(300^{\circ}) = -\frac{1}{2}\), it evaluates to a positive value. It’s like playing with puzzle pieces—once you know the pieces (the values of trigonometric functions), piecing them together becomes quite fun! Additionally, keep an eye out for numeric patterns and transformations that might lead to optimal solutions; re-check the angle measures as radians can sneak in! Finding common mistakes, especially in signs (positive/negative), often leads to miscalculating outcomes—trust me, everyone has tripped over that before!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad