S. Write each power as a product of repeated factors then tevaluate the power. \( \begin{array}{lll}\text { a. }\left(\frac{1}{3}\right)^{3} & \text { b. } 10^{4} & \text { c. }(0.8)^{2}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
Let’s break these down and tackle them one by one! For \( \left(\frac{1}{3}\right)^{3} \), you can express this as \( \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \). When you multiply those together, you get \( \frac{1}{27} \). For \( 10^{4} \), this can be written as \( 10 \times 10 \times 10 \times 10 \). Evaluating this gives you \( 10,000 \). Finally, for \( (0.8)^{2} \), it becomes \( 0.8 \times 0.8 \). Multiplying those out gives you \( 0.64 \). So, putting it all together: a. \( \left(\frac{1}{3}\right)^{3} = \frac{1}{27} \) b. \( 10^{4} = 10,000 \) c. \( (0.8)^{2} = 0.64 \)
