Solve \( (x-2<5) \cup(x+7>6) \).
\( \{x \mid-1
Ask by Martin Coles. in the United States
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To solve the compound inequality \( (x-2<5) \cup (x+7>6) \), let's break it down into its components. 1. For \( x-2 < 5 \): \[ x < 5 + 2 \implies x < 7 \] 2. For \( x+7 > 6 \): \[ x > 6 - 7 \implies x > -1 \] Now, we combine the two results using the union of intervals \( (-1, 7) \). Therefore, the solution set is: \[ \{x \mid -1 < x < 7\} \] About the real-world application, inequalities are prevalent in various fields. For example, engineers use them to determine acceptable ranges of materials' stress levels; scientists apply inequalities in data analysis to define thresholds for notable experiments or phenomena. Mastering inequalities equips you with essential skills for real-life problem-solving! When solving inequalities, it's easy to make mistakes by flipping the signs or misapplying the union and intersection rules. A common pitfall is neglecting to check whether the boundary points belong to the solution set. Always graph these inequalities to visualize the solution and double-check your work!


Puedes disfrutar
Empieza ahora- Explicaciones paso a paso
- Tutores expertos en vivo 24/7
- Número ilimitado de preguntas
- Sin interrupciones
- Acceso completo a Respuesta y Solución
- Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Totalmente gratis pero limitado
- Solución limitada


