Pregunta
upstudy study bank question image url

\( \begin{array}{l}\text { 9. Which point is a solution to the system } \\ \text { below? } \\ \qquad \)\begin{tabular}{l|l|} & \text { A) }\( (1,1 / 2) \) \\ \( y<-12 x+4 \) & \text { B) }\( (0,6) \) \\ \text { y<-6x+4} & \text { C) }\( (-1 / 2,5) \) \\ \text { D) }\( (-3,2) \)\end{tabular}\end{array} \( \begin{array}{l}\end{array} \)

Ask by Mann Ortiz. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Points C \( (-\frac{1}{2}, 5) \) and D \( (-3, 2) \) are solutions to the system.

Solución

To determine which point is a solution to the given system of inequalities, we need to check each point against both inequalities: 1. \( y < -12x + 4 \) 2. \( y < -6x + 4 \) We will evaluate each point one by one. ### Point A: \( (1, \frac{1}{2}) \) 1. Check the first inequality: \[ \frac{1}{2} < -12(1) + 4 \implies \frac{1}{2} < -12 + 4 \implies \frac{1}{2} < -8 \quad \text{(False)} \] 2. Check the second inequality: \[ \frac{1}{2} < -6(1) + 4 \implies \frac{1}{2} < -6 + 4 \implies \frac{1}{2} < -2 \quad \text{(False)} \] ### Point B: \( (0, 6) \) 1. Check the first inequality: \[ 6 < -12(0) + 4 \implies 6 < 0 + 4 \implies 6 < 4 \quad \text{(False)} \] 2. Check the second inequality: \[ 6 < -6(0) + 4 \implies 6 < 0 + 4 \implies 6 < 4 \quad \text{(False)} \] ### Point C: \( (-\frac{1}{2}, 5) \) 1. Check the first inequality: \[ 5 < -12(-\frac{1}{2}) + 4 \implies 5 < 6 + 4 \implies 5 < 10 \quad \text{(True)} \] 2. Check the second inequality: \[ 5 < -6(-\frac{1}{2}) + 4 \implies 5 < 3 + 4 \implies 5 < 7 \quad \text{(True)} \] ### Point D: \( (-3, 2) \) 1. Check the first inequality: \[ 2 < -12(-3) + 4 \implies 2 < 36 + 4 \implies 2 < 40 \quad \text{(True)} \] 2. Check the second inequality: \[ 2 < -6(-3) + 4 \implies 2 < 18 + 4 \implies 2 < 22 \quad \text{(True)} \] ### Conclusion Both Point C \( (-\frac{1}{2}, 5) \) and Point D \( (-3, 2) \) satisfy both inequalities. However, since the question asks for which point is a solution to the system, we can conclude that: - **Point C: \( (-\frac{1}{2}, 5) \)** is a solution. - **Point D: \( (-3, 2) \)** is also a solution. If only one point is to be selected, we can choose either Point C or Point D as a valid solution.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine which point is a solution to the system of inequalities given by \( y < -12x + 4 \) and \( y < -6x + 4 \), we can evaluate each point by substituting the \( x \) and \( y \) coordinates into each inequality. For point A \( (1, \frac{1}{2}) \): 1. Substitute into the first inequality: \( \frac{1}{2} < -12(1) + 4 \) → \( \frac{1}{2} < -8 \) (False) 2. Move to the second inequality: \( \frac{1}{2} < -6(1) + 4 \) → \( \frac{1}{2} < -2 \) (False) For point B \( (0, 6) \): 1. First inequality: \( 6 < -12(0) + 4 \) → \( 6 < 4 \) (False) 2. Second inequality: \( 6 < -6(0) + 4 \) → \( 6 < 4 \) (False) For point C \( (-\frac{1}{2}, 5) \): 1. First inequality: \( 5 < -12(-\frac{1}{2}) + 4 \) → \( 5 < 6 \) (True) 2. Second inequality: \( 5 < -6(-\frac{1}{2}) + 4 \) → \( 5 < 7 \) (True) For point D \( (-3, 2) \): 1. First inequality: \( 2 < -12(-3) + 4 \) → \( 2 < 40 \) (True) 2. Second inequality: \( 2 < -6(-3) + 4 \) → \( 2 < 22 \) (True) Now we look for which points satisfy both inequalities. Points C and D both meet all conditions, but since we're looking for any one correct option, **point C \( (-\frac{1}{2}, 5) \) is a solution since it satisfies both inequalities**!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad