Pregunta
upstudy study bank question image url

Suppose an object moves along a line with velocity (in \( \mathrm{ft} / \mathrm{s} \) ) \( \mathrm{v}(\mathrm{t})=6-4 \mathrm{t} \), for \( 0 \leq \mathrm{t} \leq 3 \), where t is measured in seconds. The motion is in the negative direction on the interval \( (1.5,3] \). (Type your answer in interval notation.) b. The displacement on \( [0,3] \) is \( \square \) feet.

Ask by Kelley Knight. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The displacement on [0, 3] is 0 feet.

Solución

We first compute the displacement by integrating the velocity over the time interval [0, 3]. Given:   v(t) = 6 – 4t The displacement is:   ∫[0 to 3] (6 – 4t) dt Step 1: Find the antiderivative:   ∫(6 – 4t) dt = 6t – 2t² + C Step 2: Evaluate from 0 to 3:   (6(3) – 2(3)²) – (6(0) – 2(0)²) = (18 – 18) – 0 = 0 Thus, the displacement on [0, 3] is 0 feet.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the displacement of the object over the interval \([0,3]\), we need to integrate the velocity function \(v(t) = 6 - 4t\) with respect to time \(t\) from \(0\) to \(3\): \[ \text{Displacement} = \int_0^3 v(t) \, dt = \int_0^3 (6 - 4t) \, dt. \] Calculating the integral: \[ \int (6 - 4t) \, dt = 6t - 2t^2 + C. \] Now we evaluate this from \(0\) to \(3\): \[ \left[6(3) - 2(3)^2\right] - \left[6(0) - 2(0)^2\right] = (18 - 18) - (0) = 0. \] Thus, the displacement on \([0,3]\) is \(0\) feet. Additionally, it's interesting to note that the object returns to its original position after the motion, interpreting the interplay between positive and negative velocity in this time span. Moving through scenarios where an object moves back and forth can often lead to a zero net displacement, which is fun to explore in physics—they're like a dance of motion! Another fun fact: in real-world applications, understanding displacement versus distance traveled is crucial! Take a road trip where you drive in circles; you might cover many miles, but your displacement is just the straight-line distance from your starting point to your home!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad