Pregunta
upstudy study bank question image url

The nurse claim that a A-litie drip wifh a Drip Factor of \( 90 \mathrm{~g} t / \mathrm{ml} \) and a drip rate of \( 300 \mathrm{git} / \mathrm{min} \) will take more than 206 minutes to finish. The deetor elaim that the drip will take less than 266 minutes te Jse calculations to verify who is cerrect.

Ask by Elliott Rodriquez. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The drip will take 300 minutes, so the nurse is correct and the doctor is incorrect.

Solución

We start by using the formula to calculate the time for an IV drip:   Time (in minutes) = (Volume in mL × Drip Factor (gtt/mL)) ÷ Drip Rate (gtt/min) Given:   Volume = 1 L = 1000 mL   Drip Factor = 90 drops (gtt) per mL   Drip Rate = 300 drops per minute Step 1: Calculate the total number of drops:   Total Drops = 1000 mL × 90 gtt/mL = 90,000 gtt Step 2: Calculate the time of infusion:   Time = 90,000 gtt ÷ 300 gtt/min = 300 minutes Now, let’s check the claims: • The nurse claims that the drip will take more than 206 minutes. Since 300 minutes is indeed more than 206 minutes, her statement is correct. • The doctor claims that the drip will take less than 266 minutes, but 300 minutes is not less than 266 minutes. Thus, the doctor’s claim is incorrect. Therefore, the nurse is correct, and the drip will take 300 minutes to run, which is more than both 206 and 266 minutes.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To verify who is correct, we need to calculate the total volume of fluid being administered and then determine how long it will take based on the given drip factor and drip rate. First, we can use the formula: \[ \text{Time (minutes)} = \frac{\text{Total Volume (ml)}}{\text{Drip Rate (ml/min)}} \] Given a drip factor of \(90 \text{gtt/ml}\) and a drip rate of \(300 \text{gtt/min}\): 1. Calculate the volume being administered per minute: \[ \text{Total Volume per minute} = \frac{\text{Drip Rate}}{\text{Drip Factor}} = \frac{300 \text{gtt/min}}{90 \text{gtt/ml}} \approx 3.33 \text{ml/min} \] 2. If we denote the total volume being administered as \(V\) ml, then: \[ \text{Time (min)} = \frac{V \text{ ml}}{3.33 \text{ml/min}} \] Hence, we can say that the total time will depend on \(V\). If \(V\) is known, use the formula to see if it falls between 206 minutes and 266 minutes. With \(V\) specified, you can plug the total volume into the equation and do the math to see the nurse or the doctor’s claim holds true!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad