Find the slope of the line that passes through each pair of points. \( \begin{array}{llll}5 .(4,3) \text { and }(-6,-5) & \text { 6. }(12,-2) \text { and }(4,8) & 7 .(-8,7) \text { and }(-8,12) & 8 .(-2,-5) \text { and }(7,-5)\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the slope of a line that passes through two points, we use the formula: \[ \text{slope} (m) = \frac{y_2 - y_1}{x_2 - x_1} \] Now, we'll calculate the slope for each pair of points given: 1. For the points \( (4,3) \) and \( (-6,-5) \): \[ m = \frac{-5 - 3}{-6 - 4} = \frac{-8}{-10} = \frac{4}{5} \] 2. For the points \( (12,-2) \) and \( (4,8) \): \[ m = \frac{8 - (-2)}{4 - 12} = \frac{10}{-8} = -\frac{5}{4} \] 3. For the points \( (-8,7) \) and \( (-8,12) \): This line is vertical since the x-coordinates are the same, so the slope is undefined. 4. For the points \( (-2,-5) \) and \( (7,-5) \): \[ m = \frac{-5 - (-5)}{7 - (-2)} = \frac{0}{9} = 0 \] So, the slopes are: 1. \( \frac{4}{5} \) 2. \( -\frac{5}{4} \) 3. Undefined 4. \( 0 \)
