A \( 20 \% \) acid solution is mixed with a \( 70 \% \) acid solution to get 50 liters of a \( 40 \% \) solution. How much of the \( 70 \% \) solution is used? 25 liters 20 liters 30 liters
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find out how much of the \( 70\% \) solution is used, let’s set up the problem using variables. Let \( x \) be the amount of the \( 70\% \) solution, and thus \( 50 - x \) will be the amount of the \( 20\% \) solution. The equation for the total amount of acid in the mixture can be set up as follows: \[ 0.7x + 0.2(50 - x) = 0.4(50) \] Simplifying this gives: \[ 0.7x + 10 - 0.2x = 20 \] Combining like terms: \[ 0.5x + 10 = 20 \] Subtracting \( 10 \) from both sides: \[ 0.5x = 10 \] Dividing by \( 0.5 \): \[ x = 20 \] So, \( 20 \) liters of the \( 70\% \) solution is used. Now, let's check our options: 25 liters, 20 liters, and 30 liters. The answer is **20 liters**!
