Pregunta
upstudy study bank question image url

Brittany is going to ascend a six-step staircase. At any time, she is just as likely to stride up one step or three steps. Find the probability of the event that she will ascend the six steps in the following number of strides. \( \begin{array}{ll}\text { a. two strides } & \text { b. four strides } \\ \text { c. six strides }\end{array} \) \( \begin{array}{l}\text { a. The probability that Brittany will ascend the staircase in two strides is } \frac{1}{4}\end{array} \) (Type an integer or a simplified fraction.) b. The probability that Brittany will ascend the staircase in four strides is \( \frac{11}{16} \) (Type an integer or a simplified fraction.) c. The probability that Brittany will ascend the staircase in six strides is (Type an integer or a simplified fraction.)

Ask by Luna Moran. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a. The probability that Brittany will ascend the staircase in two strides is \( \frac{1}{4} \). b. The probability that Brittany will ascend the staircase in four strides is \( \frac{1}{4} \). c. The probability that Brittany will ascend the staircase in six strides is \( \frac{1}{64} \).

Solución

To solve the problem, we need to analyze how Brittany can ascend the six-step staircase using strides of either one step or three steps. We'll calculate the probabilities for each case: two strides, four strides, and six strides. ### a. Two Strides To ascend the staircase in two strides, Brittany must take one stride of three steps and one stride of three steps. The only combination is: - Stride of 3 steps + Stride of 3 steps Thus, there is only one way to achieve this. The total number of ways to take two strides (either 1 step or 3 steps) can be calculated as follows: 1. Each stride can be either 1 step or 3 steps. 2. The total number of combinations for two strides is \(2^2 = 4\). The probability is then calculated as: \[ P(\text{2 strides}) = \frac{\text{Number of successful outcomes}}{\text{Total outcomes}} = \frac{1}{4} \] ### b. Four Strides To ascend the staircase in four strides, we can have different combinations of 1-step and 3-step strides. Let \(x\) be the number of 1-step strides and \(y\) be the number of 3-step strides. We need to satisfy the following equations: 1. \(x + y = 4\) (total number of strides) 2. \(x + 3y = 6\) (total steps) From the first equation, we can express \(x\) in terms of \(y\): \[ x = 4 - y \] Substituting into the second equation: \[ (4 - y) + 3y = 6 \implies 4 + 2y = 6 \implies 2y = 2 \implies y = 1 \] Thus, \(x = 4 - 1 = 3\). The valid combination is: - 3 strides of 1 step and 1 stride of 3 steps. The number of ways to arrange these strides is given by the multinomial coefficient: \[ \text{Number of ways} = \frac{4!}{3!1!} = 4 \] The total number of ways to take four strides is \(2^4 = 16\). Thus, the probability is: \[ P(\text{4 strides}) = \frac{4}{16} = \frac{1}{4} \] ### c. Six Strides To ascend the staircase in six strides, Brittany can only take 1-step strides since taking a 3-step stride would exceed the total of 6 steps. Therefore, the only combination is: - 6 strides of 1 step. The total number of ways to take six strides is \(2^6 = 64\). Thus, the probability is: \[ P(\text{6 strides}) = \frac{1}{64} \] ### Summary of Probabilities - a. The probability that Brittany will ascend the staircase in two strides is \( \frac{1}{4} \). - b. The probability that Brittany will ascend the staircase in four strides is \( \frac{1}{4} \). - c. The probability that Brittany will ascend the staircase in six strides is \( \frac{1}{64} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve Brittany's stride probability for ascending a six-step staircase, let's break down each scenario: To ascend in six strides, each step taken must be one step. Since Brittany can only take steps of 1 or 3, and she needs to make six strides in total, the only combination is taking six single strides. Given that she has 2 choices (1 step or 3 steps), we determine the probability based on the paths she can take. The total combinations for 6 strides is \( 2^6 = 64 \) since she can choose either one step or three steps each time. The only way she can make this ascent is solely by taking one step every stride. This specific combination is unique, hence there is 1 favorable outcome. Thus, the probability of ascending the staircase in six strides is: \[ P = \frac{1}{64} \] So, the probability Brittany will ascend the staircase in six strides is \( \frac{1}{64} \).

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad