Solve the inequality, Graph the solution set, and write the solution set in set-buider notation and interval notation. Write numbers as simplified fractions or integers. \[ -3 m-4>23 \]
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
First, let's solve the inequality \(-3m - 4 > 23\). Begin by isolating \(m\) on one side of the inequality: 1. Add 4 to both sides: \[-3m > 23 + 4\] \[-3m > 27\] 2. Now, divide both sides by -3. Remember, when dividing by a negative number, we flip the inequality sign: \[m < -9\] Now, let's graph the solution set. On a number line, you would draw an open circle at -9 (indicating that -9 is not included in the solution) and shade everything to the left of -9. In set-builder notation, the solution set can be written as: \[\{ m \ | \ m < -9 \}\] In interval notation, the solution set is denoted as: \((-∞, -9)\)
