Pregunta
upstudy study bank question image url

Find the balance after 6 years if \( \$ 24000 \) is invested at \( 3.6 \% \) p.a. compounded monthly.

Ask by Huff Pena. in Australia
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The balance after 6 years will be approximately \$29,806.

Solución

To solve this, we use the compound interest formula:   A = P × (1 + r/n)^(n·t) Where:   P = the principal amount = $24,000   r = annual interest rate (in decimal) = 0.036   n = number of compounding periods per year = 12 (since it is compounded monthly)   t = time in years = 6 Plug in the numbers:   A = 24000 × (1 + 0.036/12)^(12×6) Step 1. Calculate the monthly interest rate:   0.036/12 = 0.003 Step 2. Calculate the total number of compounding periods:   12 × 6 = 72 Step 3. Write the expression:   A = 24000 × (1.003)^72 Step 4. Compute (1.003)^72:   (1.003)^72 ≈ 1.2419   (using a calculator) Step 5. Multiply to find the balance:   A ≈ 24000 × 1.2419 ≈ 29806 Thus, the balance after 6 years will be approximately $29,806.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the balance after 6 years with \( \$ 24000 \) invested at \( 3.6\% \) per annum compounded monthly, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the number of years the money is invested for. Given values: - \( P = 24000 \) - \( r = 0.036 \) - \( n = 12 \) (monthly compounding) - \( t = 6 \) Plugging in the values: \[ A = 24000 \left(1 + \frac{0.036}{12}\right)^{12 \times 6} \] Calculating: \[ A = 24000 \left(1 + 0.003\right)^{72} \] \[ A = 24000 \left(1.003\right)^{72} \] \[ A \approx 24000 \times 1.233 \] \[ A \approx 29600.68 \] So, the balance after 6 years will be approximately \( \$ 29,600.68 \). --- If you're curious about how compound interest grows over time, just remember that "the earlier, the better!" The earlier you start investing, even small amounts, the more time your money has to compound and grow—it's like planting seeds in a garden! And speaking of gardens, did you know that many successful investors treat their investments like long-term crops? They cultivate their portfolios patiently and allow their investments to mature! Instead of rushing for quick returns, they watch their investments bloom over time.

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad