Solve for \( r \). Give an exact answer. \( \frac{1}{2} r-3=3\left(4-\frac{3}{2} r\right) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
Let's solve for \( r \) in the equation \( \frac{1}{2} r - 3 = 3\left(4 - \frac{3}{2} r\right) \). First, we'll distribute the 3 on the right side: \[ 3\left(4 - \frac{3}{2} r\right) = 12 - \frac{9}{2} r \] Now, plug this back into the equation: \[ \frac{1}{2} r - 3 = 12 - \frac{9}{2} r \] Next, we can eliminate \( -3 \) from the left side by adding 3 to both sides: \[ \frac{1}{2} r = 12 + 3 - \frac{9}{2} r \] This simplifies to: \[ \frac{1}{2} r = 15 - \frac{9}{2} r \] Now, let's add \( \frac{9}{2} r \) to both sides to combine terms: \[ \frac{1}{2} r + \frac{9}{2} r = 15 \] This gives us: \[ \frac{10}{2} r = 15 \] Simplifying the left side, we have: \[ 5r = 15 \] Now, divide both sides by 5 to solve for \( r \): \[ r = 3 \] Thus, the exact answer is: \[ \boxed{3} \]
