Pregunta
Estimate the sum by rounding the mixed numbers to the nearest whole numbers. \( 13 \frac{2}{3}+22 \frac{1}{5}+9 \frac{11}{15} \) (A) 44 (B) 45 (C) 46 (D) 47
Ask by Vaughn Santiago. in the United States
Feb 25,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The estimated sum is 46.
Solución
We need to round each mixed number to the nearest whole number before summing.
1. For 13 2/3: Since 2/3 (approximately 0.67) is more than 0.5, round up to 14.
2. For 22 1/5: Since 1/5 (which is 0.2) is less than 0.5, round down to 22.
3. For 9 11/15: Since 11/15 (approximately 0.73) is more than 0.5, round up to 10.
Now, sum the rounded numbers:
14 + 22 + 10 = 46
Thus, the estimated sum is 46, which corresponds to choice (C).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
To round the mixed numbers to the nearest whole numbers: - \( 13 \frac{2}{3} \) rounds to 14 (since \( \frac{2}{3} \) is closer to 1). - \( 22 \frac{1}{5} \) rounds to 22 (since \( \frac{1}{5} \) is closer to 0). - \( 9 \frac{11}{15} \) rounds to 10 (since \( \frac{11}{15} \) is closer to 1). Now, add the rounded numbers: \( 14 + 22 + 10 = 46 \). The estimated sum is 46, making the answer (C) 46!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium