Divide. \[ \left(3 x^{2}+22 x+7\right) \div(x+7) \] 0 Suggested tutorial: \( \square \) Learn It: Divide polynomials using long division. Need Help? Watch It SUBMIT ANHINER 5. [-/1 Pointc] DFTAIIS MV NOTEC
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
Let's dive into polynomial long division! To divide \( (3x^2 + 22x + 7) \) by \( (x + 7) \), you start by determining how many times the leading term \( x \) goes into the leading term of the numerator, \( 3x^2 \). The answer is \( 3x \), which you then multiply through, subtract, and continue the process until you can’t divide anymore. This way, you can find both the quotient and the remainder! In the end, dividing polynomials is akin to making a delicious layered cake; each layer (or step in the division process) builds on the previous one, leading to something sweet at the end! And hey, don’t forget to check your work by multiplying the divisor by the quotient and adding the remainder; you might find a surprising connection or a sweet little twist in the problem!
