Simplify the following Expression. \[ (\sqrt{x}+9)(\sqrt{x}-3)=\square \]
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To simplify the expression, we can use the difference of squares formula, which states that \( (a+b)(a-b) = a^2 - b^2 \). Here, \( a = \sqrt{x} \) and \( b = 3 \). Using the formula, we get: \[ (\sqrt{x}+9)(\sqrt{x}-3) = \sqrt{x}^2 - 3^2 + 9\sqrt{x} - 27 \] Calculating \( \sqrt{x}^2 \) gives us \( x \) and \( 3^2 \) gives us \( 9 \): \[ = x - 9 + 9\sqrt{x} - 27 \] Combining like terms results in: \[ = x + 9\sqrt{x} - 36 \] So, the simplified expression is: \[ = x + 9\sqrt{x} - 36 \] Now you can confidently present the simplified expression to anyone!
