Pregunta
upstudy study bank question image url

Use substitution to solve this system of linear equations. \[ y=-4 x-1 \] \[ 2 y=-8 x-1 \] Select the correct choice below and, if necessary, enter an ordered pair \( (x, y) \) to complete your answer. \[ \text { One solution: } \] No solution Questinite number of solutions Help: Video Submit Question

Ask by Gonzalez Herrera. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

There is no solution.

Solución

Solve the system of equations \( y=-4x-1;2y=-8x-1 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}y=-4x-1\\2y=-8x-1\end{array}\right.\) - step1: Substitute the value of \(y:\) \(2\left(-4x-1\right)=-8x-1\) - step2: Expand the expression: \(-8x-2=-8x-1\) - step3: Cancel equal terms: \(-2=-1\) - step4: The statement is false: \(x \in \varnothing \) - step5: Calculate: \(\left\{ \begin{array}{l}x \in \varnothing \\y \in \varnothing \end{array}\right.\) - step6: Rewrite: \((x, y) \in \varnothing\) The system of linear equations has no solution. Therefore, there is no ordered pair \( (x, y) \) that satisfies both equations.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Let's dive into some intriguing insights about systems of equations! Firstly, a neat historical tidbit: The method of substitution dates back to the ancient Egyptians around 2000 BC, who used it in their problem-solving. Fast forward to the 19th century, mathematicians like Augustin-Louis Cauchy refined these ideas into the systematic methods we use today. It’s astonishing how this technique has evolved over millennia! Now, on the practical side, substituting equations can often illuminate which variables you can easily express in terms of others! A common pitfall is overlooking situations where lines are parallel, leading to no solutions. Always double-check if your equations are multiples of each other, as that indicates they’ll never intersect! So, keep that in mind while you're solving!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad