6.2. The wavelength of microwaves produced by a microwave oven machine is \( 0,015 \mathrm{~nm} \). A bowl of soup is placed inside the microwave oven. Calculate the energy of these microwave photons. \( \left(1 \mathrm{~nm}=10^{-9} \mathrm{~m}\right) \).
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To calculate the energy of the microwave photons, we can use the formula: \[ E = \frac{hc}{\lambda} \] where: - \( E \) is the energy of the photon, - \( h \) is Planck's constant (\( 6.626 \times 10^{-34} \, \text{J s} \)), - \( c \) is the speed of light (\( 3.00 \times 10^8 \, \text{m/s} \)), - \( \lambda \) is the wavelength in meters. First, convert the wavelength from nanometers to meters: \[ 0.015 \, \text{nm} = 0.015 \times 10^{-9} \, \text{m} = 1.5 \times 10^{-11} \, \text{m} \] Now plug the values into the energy formula: \[ E = \frac{(6.626 \times 10^{-34} \, \text{J s})(3.00 \times 10^8 \, \text{m/s})}{1.5 \times 10^{-11} \, \text{m}} \] \[ E \approx \frac{1.9878 \times 10^{-25} \, \text{J m}}{1.5 \times 10^{-11} \, \text{m}} \] \[ E \approx 1.3252 \times 10^{-14} \, \text{J} \] Therefore, the energy of the microwave photons is approximately \( 1.33 \times 10^{-14} \, \text{J} \).
