\( P(x)=x^{3}+6 x^{2}-32 \) All the real zeros of the given polynomlal are integers. Find the zeros. (Enter your answers as a comma-separated list. Enter all answers including repetitions.) Write the polynomial in factored form. \( P(x)=\square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To find the real zeros of the polynomial \( P(x) = x^3 + 6x^2 - 32 \), we can apply the Rational Root Theorem. Testing for integer roots, we find that \( P(2) = 0 \), which means \( x = 2 \) is a root. We can then factor \( P(x) \) as \( (x - 2)(x^2 + 8x + 16) \). The quadratic \( x^2 + 8x + 16 \) can be factored further as \( (x + 4)(x + 4) \) or \( (x + 4)^2 \). Thus, the complete factorization is: \[ P(x) = (x - 2)(x + 4)^2 \] Therefore, the zeros are \( 2, -4, -4 \). So, the final answers are: Zeros: \( 2, -4, -4 \) Factored form: \( P(x) = (x - 2)(x + 4)^2 \)
preguntas relacionadas
