Pregunta
upstudy study bank question image url

\( P(x)=x^{3}+6 x^{2}-32 \) All the real zeros of the given polynomlal are integers. Find the zeros. (Enter your answers as a comma-separated list. Enter all answers including repetitions.) Write the polynomial in factored form. \( P(x)=\square \)

Ask by Hill Williams. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The zeros of the polynomial are \( x = 2 \) and \( x = -4 \). The factored form of the polynomial is \( P(x) = (x-2)(x+4)^2 \).

Solución

To find the zeros of the polynomial \( P(x) = x^{3} + 6x^{2} - 32 \), we need to solve the equation \( P(x) = 0 \). Given that all the real zeros of the polynomial are integers, we can start by factoring the polynomial to find its zeros. Let's factor the polynomial \( P(x) = x^{3} + 6x^{2} - 32 \) to find its zeros. Factor the expression by following steps: - step0: Factor: \(x^{3}+6x^{2}-32\) - step1: Calculate: \(x^{3}+8x^{2}+16x-2x^{2}-16x-32\) - step2: Rewrite the expression: \(x\times x^{2}+x\times 8x+x\times 16-2x^{2}-2\times 8x-2\times 16\) - step3: Factor the expression: \(x\left(x^{2}+8x+16\right)-2\left(x^{2}+8x+16\right)\) - step4: Factor the expression: \(\left(x-2\right)\left(x^{2}+8x+16\right)\) - step5: Factor the expression: \(\left(x-2\right)\left(x+4\right)^{2}\) The factored form of the polynomial \( P(x) = x^{3} + 6x^{2} - 32 \) is \( (x-2)(x+4)^{2} \). Now, we can find the zeros of the polynomial by setting each factor equal to zero and solving for \( x \). Setting \( x - 2 = 0 \), we find \( x = 2 \). Setting \( x + 4 = 0 \), we find \( x = -4 \). Therefore, the zeros of the polynomial are \( x = 2 \) and \( x = -4 \). The factored form of the polynomial is \( P(x) = (x-2)(x+4)^{2} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the real zeros of the polynomial \( P(x) = x^3 + 6x^2 - 32 \), we can apply the Rational Root Theorem. Testing for integer roots, we find that \( P(2) = 0 \), which means \( x = 2 \) is a root. We can then factor \( P(x) \) as \( (x - 2)(x^2 + 8x + 16) \). The quadratic \( x^2 + 8x + 16 \) can be factored further as \( (x + 4)(x + 4) \) or \( (x + 4)^2 \). Thus, the complete factorization is: \[ P(x) = (x - 2)(x + 4)^2 \] Therefore, the zeros are \( 2, -4, -4 \). So, the final answers are: Zeros: \( 2, -4, -4 \) Factored form: \( P(x) = (x - 2)(x + 4)^2 \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad