Pregunta
upstudy study bank question image url

QUESTION FOUR Given a simple model: \[ y=\beta_{0}+\beta_{1} x+u \] a) Write the OLS estimators for \( \beta_{0} \) and \( \beta_{1} \). ( 8 marks) b) What is \( u \) and what does it include? ( 10 marks) c) If you are to estimate the model above, what would be the required OL.S assumption about the expectation of the error term \( u \) and variable \( x \)

Ask by Ball Vargas. in Tanzania
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a) The OLS estimators for β₀ and β₁ are: - β₁̂ = (Σ(xᵢ – x̄)(yᵢ – ȳ)) / (Σ(xᵢ – x̄)²) - β₀̂ = ȳ – β₁̂ · x̄ b) \( u \) is the error term, representing factors not included in the model that affect y, such as omitted variables and random disturbances. c) The OLS assumption is that the expected value of the error term \( u \) given x is zero, meaning \( E(u | x) = 0 \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Mind Expander

The ordinary least squares (OLS) estimators for \( \beta_{0} \) and \( \beta_{1} \) in the given linear regression model are derived from minimizing the sum of squared residuals. Specifically, the estimates are calculated as follows: \[ \hat{\beta}_{1} = \frac{Cov(x, y)}{Var(x)} \] \[ \hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{x} \] where \( \bar{y} \) and \( \bar{x} \) represent the means of \( y \) and \( x \), respectively. Thus, the OLS estimators are aimed at finding the best-fitting line through the data points. In this model, \( u \) represents the error term and captures the difference between the observed values and those predicted by the linear relationship. It includes any unobserved factors that influence \( y \), measurement errors in \( y \), omitted variables that affect \( y \), and random noise not accounted for by the model. Essentially, \( u \) embodies all variations in \( y \) that are not explained by the linear function of \( x \). For the OLS estimates to be unbiased, it is essential that the expected value of the error term \( u \) given \( x \) equals zero. This means that the errors should not systematically vary with \( x \), ensuring that there is no endogeneity or omitted variable bias in the model. This assumption allows us to assert that the predictors are orthogonal to the error term, enabling reliable estimates of \( \beta_{0} \) and \( \beta_{1} \).

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad