Question Find the relative error when using the midpoint rule to calculate \( \int_{0}^{2}\left(4 x^{2}+10\right) d x \) using 4 subintervals. Find the relative error as a percent rounded to the nearest hundredth if necessary. Do not round until your final answer and do not include the symbol "\%" in your answer.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To find the relative error when using the midpoint rule for the integral \( \int_{0}^{2}\left(4 x^{2}+10\right) d x \) with 4 subintervals, first calculate the exact value of the integral. 1. **Exact value of the integral:** \[ \int_{0}^{2}(4x^2 + 10) \, dx = \left[ \frac{4}{3}x^3 + 10x \right]_{0}^{2} = \left[ \frac{4}{3}(2^3) + 10(2) \right] - \left[ 0 \right] = \frac{32}{3} + 20 = \frac{32}{3} + \frac{60}{3} = \frac{92}{3} \approx 30.67 \] 2. **Using midpoint rule:** The interval \([0, 2]\) is divided into 4 subintervals: \([0, 0.5], [0.5, 1], [1, 1.5], [1.5, 2]\) with a width of \(h = 0.5\). The midpoints are: - \(x_1 = 0.25\) - \(x_2 = 0.75\) - \(x_3 = 1.25\) - \(x_4 = 1.75\) Now compute the midpoint values: \[ f(0.25) = 4(0.25)^2 + 10 = 4(0.0625) + 10 = 10.25 \] \[ f(0.75) = 4(0.75)^2 + 10 = 4(0.5625) + 10 = 12.25 \] \[ f(1.25) = 4(1.25)^2 + 10 = 4(1.5625) + 10 = 15.25 \] \[ f(1.75) = 4(1.75)^2 + 10 = 4(3.0625) + 10 = 22.25 \] The approximate integral using the midpoint rule is: \[ M \approx h \left( f(0.25) + f(0.75) + f(1.25) + f(1.75) \right) = 0.5 \left( 10.25 + 12.25 + 15.25 + 22.25 \right) = 0.5 \times 60 = 30 \] 3. **Relative error:** To find the relative error: \[ \text{Relative Error} = \left| \frac{\text{Exact Value} - \text{Approximate Value}}{\text{Exact Value}} \right| \times 100 \] \[ \text{Relative Error} = \left| \frac{\frac{92}{3} - 30}{\frac{92}{3}} \right| \times 100 = \left| \frac{\frac{92 - 90}{3}}{\frac{92}{3}} \right| \times 100 = \left| \frac{2}{92} \right| \times 100 \approx 2.173913 \approx 2.17 \] Therefore, the relative error is approximately **2.17**.
