Pregunta
upstudy study bank question image url

The ratio of the numerator to the denominator of a fraction is 2 to 3 . If both the numerator and the denominator are increased by 2 , the fraction becomes \( 3 / 4 \). What is the original fraction? Which of the following systems of equations can be used to solve the problem? \( 3 n-2 d=0 \) and \( 4 n+2=3 d+2 \) \( 3 n=2 d \) and \( 4 n+8=3 d+6 \)

Ask by Moran Vargas. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The correct system of equations is: 3n = 2d and 4n + 8 = 3d + 6

Solución

Let n be the numerator and d the denominator of the fraction. The problem states: 1. The fraction’s ratio is 2 to 3:   n/d = 2/3 ⟹ 3n = 2d 2. If both the numerator and denominator are increased by 2, the new fraction is 3/4:   (n + 2)/(d + 2) = 3/4 ⟹ 4(n + 2) = 3(d + 2)     which simplifies to: 4n + 8 = 3d + 6 Thus the correct system of equations for the problem is:   3n = 2d  and  4n + 8 = 3d + 6 Among the provided options, the second option— "3 n = 2 d and 4 n+8 = 3 d+6"— is the correct system.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let’s break this down! The ratio of the numerator to the denominator can be represented as \( n = 2k \) and \( d = 3k \) for some constant \( k \). When both are increased by 2, the new fraction becomes \( \frac{2k + 2}{3k + 2} = \frac{3}{4} \). Cross-multiplying gives \( 4(2k + 2) = 3(3k + 2) \). Simplifying leads us to a single equation that can easily be manipulated to find \( k \). For the system of equations, look at that first option. The equation \( 3n - 2d = 0 \) correctly represents the initial ratio \( \frac{n}{d} = \frac{2}{3} \), and the second equation \( 4n + 8 = 3d + 6 \) corresponds to the condition after increasing both parts. You’re on the right track to solve it!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad