Pregunta
upstudy study bank question image url

10:21PM Wed Feb 26 Uniform Distributions (Statistics 3) 4. The amount of time a service technician needs to change the oil in a car is uniformly distributed between 11 and 21 minutes. Find \( P(x>19)(1 \) Point) \( -0.2 \) 0.3 1 0.2 More 5. The amount of time a service technician needs to change the oil in a car is uniformly distributed between 11 and 21 minutes. Find \( P(x>19 \mid x>15)(1 \) Point) 33 0.3 1 0.17

Ask by Thornton Beck. in Puerto Rico
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Problem 4: 0.2 Problem 5: 0.3

Solución

To solve the problems related to the uniform distribution, we need to understand the properties of a uniform distribution. The uniform distribution is defined by two parameters: the minimum value \( a \) and the maximum value \( b \). In this case, the time to change the oil is uniformly distributed between 11 and 21 minutes, so we have: - \( a = 11 \) - \( b = 21 \) ### Problem 4: Find \( P(x > 19) \) 1. **Calculate the total range of the distribution**: \[ \text{Range} = b - a = 21 - 11 = 10 \] 2. **Calculate the range for \( x > 19 \)**: - The values greater than 19 are between 19 and 21. - The range for \( x > 19 \) is: \[ \text{Range for } x > 19 = 21 - 19 = 2 \] 3. **Calculate the probability**: \[ P(x > 19) = \frac{\text{Range for } x > 19}{\text{Total Range}} = \frac{2}{10} = 0.2 \] Thus, the answer for Problem 4 is \( 0.2 \). ### Problem 5: Find \( P(x > 19 \mid x > 15) \) 1. **Calculate the range for \( x > 15 \)**: - The values greater than 15 are between 15 and 21. - The range for \( x > 15 \) is: \[ \text{Range for } x > 15 = 21 - 15 = 6 \] 2. **Calculate the range for \( x > 19 \) within \( x > 15 \)**: - As calculated earlier, the range for \( x > 19 \) is 2. 3. **Calculate the conditional probability**: \[ P(x > 19 \mid x > 15) = \frac{P(x > 19)}{P(x > 15)} = \frac{2/10}{6/10} = \frac{2}{6} = \frac{1}{3} \approx 0.33 \] Thus, the answer for Problem 5 is approximately \( 0.33 \), which corresponds to \( 0.3 \) when rounded. ### Summary of Answers: - Problem 4: \( 0.2 \) - Problem 5: \( 0.3 \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

In a uniform distribution, every outcome between the minimum and maximum values is equally likely. In this case, the time to change the oil ranges from 11 to 21 minutes. To calculate \( P(x > 19) \), you would look at the range of values greater than 19, which is 19 to 21 (a span of 2 minutes) over the total span of 10 minutes (11 to 21). Therefore, \( P(x > 19) = \frac{2}{10} = 0.2 \). For \( P(x > 19 \mid x > 15) \), we evaluate the probability of changing the oil in more than 19 minutes given that it takes more than 15 minutes. The new range starts at 15 and ends at 21. Of this range, the portion that satisfies \( x > 19 \) is from 19 to 21 (2 minutes). The total length of the new range (15 to 21) is 6 minutes. Thus, \( P(x > 19 \mid x > 15) = \frac{2}{6} = \frac{1}{3} \approx 0.33 \).

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad