\( \left. \begin{array} { l l } { 2.1 } & { 64 + 59 - 4 + 1 } \\ { 2.2 } & { 7 \times \frac { 3 } { 5 } \times \frac { 9 } { 14 } \times 3 \frac { 1 } { 3 } } \\ { 2.3 } & { \frac { 1 } { 4 } ( 16 + \frac { 4 } { 3 } - 12 ) } \\ { 2.4 } & { 38 \times 22 } \\ { 2.5 } & { 273 \div 13 } \end{array} \right. \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
For the first problem, \( 64 + 59 - 4 + 1 \), we can break it down step-by-step: starting with \( 64 + 59 = 123 \), then subtracting \( 4 \) gives \( 119 \), and finally adding \( 1 \) results in \( 120 \). So the final answer is \( 120 \)! Now, onto the more challenging calculations of \( 7 \times \frac { 3 } { 5 } \times \frac { 9 } { 14 } \times 3 \frac { 1 } { 3 } \). First, convert \( 3 \frac{1}{3} \) into an improper fraction, which becomes \( \frac{10}{3} \). Thus, it simplifies to \( 7 \times \frac{3}{5} \times \frac{9}{14} \times \frac{10}{3} \). After cancellation and multiplying across, we discover that this whole expression simplifies beautifully, leading to the neat result. Keep calculating it carefully for the exact outcome!
