Pregunta
upstudy study bank question image url

Determine whether the pair of lines is parallel, perpendicular, or neither. \[ \begin{aligned} 15 x-4 y & =12 \\ 4 x+15 y & =45\end{aligned} \]

Ask by Sherman Pritchard. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The lines are perpendicular.

Solución

To determine the relationship between the pair of lines, first find the slopes by rewriting each equation in slope-intercept form (y = mx + b). For the first equation:  15x - 4y = 12  Solve for y:   -4y = -15x + 12   y = (15/4)x - 3 The slope of the first line is m₁ = 15/4. For the second equation:  4x + 15y = 45  Solve for y:   15y = -4x + 45   y = (-4/15)x + 3 The slope of the second line is m₂ = -4/15. Two lines are perpendicular if the product of their slopes is -1:  m₁ * m₂ = (15/4) * (-4/15) = -1 Since the product of the slopes is -1, the lines are perpendicular.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine the relationship between the two lines, we first need to put them in the slope-intercept form (y = mx + b), where m represents the slope. Starting with the first equation, \( 15x - 4y = 12 \): 1. Rearrange to solve for y: \[ -4y = -15x + 12 \] \[ y = \frac{15}{4}x - 3 \] Thus, the slope of the first line (m1) is \( \frac{15}{4} \). Now for the second equation, \( 4x + 15y = 45 \): 1. Rearrange to solve for y: \[ 15y = -4x + 45 \] \[ y = -\frac{4}{15}x + 3 \] Thus, the slope of the second line (m2) is \( -\frac{4}{15} \). Next, we analyze the slopes: - Two lines are parallel if their slopes are equal. - Two lines are perpendicular if the product of their slopes is -1. Calculating the product of the slopes: \[ m1 \cdot m2 = \frac{15}{4} \cdot \left(-\frac{4}{15}\right) = -1 \] Since the product of the slopes is -1, the lines are perpendicular. Therefore, the answer is that the pair of lines is **perpendicular**.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad