Pregunta
upstudy study bank question image url

4. In the diagram ahown of right trangle QRS, Mirtude \( R T \) is dhwn to \( Q S \), If \( R S=20 \) and \( Q S=25 \), then find the length of \( \overline{S T} \). Show how you arrived at yeur answer.

Ask by Powell Kelley. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The length of \( \overline{S T} \) is 16.

Solución

We are given a right triangle QRS with right angle at R. The altitude RT is drawn from the right angle R to the hypotenuse QS, meeting QS at T. It is given that RS = 20 (one leg) and QS = 25 (the hypotenuse). Step 1. Find the other leg. Since QRS is a right triangle with legs QR and RS, by the Pythagorean theorem:   QR² + RS² = QS² Substitute the given values:   QR² + 20² = 25²   QR² + 400 = 625   QR² = 625 − 400 = 225 Thus, QR = 15. Step 2. Relate the hipotenuse segments. When the altitude (RT) is drawn from the right angle of a right triangle, it divides the hypotenuse QS into two segments, QT and ST. A useful relationship in a right triangle is that the square of each leg equals the product of the hypotenuse and the segment of the hypotenuse adjacent to that leg. In particular, for leg RS we have:   RS² = QS × ST Step 3. Solve for ST. Plug in the known values:   20² = 25 × ST   400 = 25 × ST Solve for ST:   ST = 400 ÷ 25 = 16 Thus, the length of ST is 16. Final Answer: 16

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve for the length of \( \overline{S T} \), we can apply the Pythagorean theorem, which states that in a right triangle, the square of the length of the hypotenuse (in this case, \( Q S \)) is equal to the sum of the squares of the other two sides. Here, we know that: 1. \( RS = 20 \) 2. \( QS = 25 \) Using the equation: \[ QS^2 = RS^2 + ST^2 \] we can substitute the values: \[ 25^2 = 20^2 + ST^2 \] Calculating the squares: \[ 625 = 400 + ST^2 \] Now, we can isolate \( ST^2 \): \[ ST^2 = 625 - 400 \] \[ ST^2 = 225 \] Taking the square root of both sides to find \( ST \): \[ ST = \sqrt{225} = 15 \] So, the length of \( \overline{S T} \) is 15 units. Happy triangle solving! 🎉 Did you know the Pythagorean theorem has been used for thousands of years, tracing its roots back to ancient civilizations like the Babylonians and Greeks? It’s named after the mathematician Pythagoras, but similar principles were known long before his time. It's fascinating how such a simple relationship between the sides of a right triangle has stood the test of time in the world of mathematics! In real-world applications, the Pythagorean theorem isn't just for classrooms; it's used in fields like architecture, engineering, and navigation! For example, when building structures, engineers rely on this theorem to ensure that angles are precise and components fit together perfectly. Whether you're designing a roof or laying out a plot of land, this simple formula becomes your best friend, guiding your measurements with reliability!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad