Pregunta
upstudy study bank question image url

2. Determine the maximum value of each quadratic expression below, and the value of \( x \) for which this maximum value exists: \( \begin{array}{ll}\text { a) }-x^{2}+4 & \text { b) }-(x-2)^{2}+5 \\ \text { c) }-(x+3)^{2}-1 & \text { d) }-2(x-1)^{2}+3\end{array} \)

Ask by Page Evans. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- a) Maximum value: 4 at \( x = 0 \) - b) Maximum value: 5 at \( x = 2 \) - c) Maximum value: -1 at \( x = -3 \) - d) Maximum value: 3 at \( x = 1 \)

Solución

To determine the maximum value of each quadratic expression and the value of \( x \) at which this maximum occurs, we can use the vertex form of a quadratic function. The general form of a quadratic function is given by: \[ f(x) = ax^2 + bx + c \] For a quadratic in the form \( f(x) = -a(x - h)^2 + k \), the maximum value occurs at \( x = h \) and the maximum value is \( k \). Let's analyze each expression step by step: ### a) \( -x^2 + 4 \) This can be rewritten in vertex form as: \[ f(x) = -1(x - 0)^2 + 4 \] - The maximum value is \( 4 \). - The value of \( x \) for which this maximum occurs is \( 0 \). ### b) \( -(x - 2)^2 + 5 \) This is already in vertex form: \[ f(x) = -1(x - 2)^2 + 5 \] - The maximum value is \( 5 \). - The value of \( x \) for which this maximum occurs is \( 2 \). ### c) \( -(x + 3)^2 - 1 \) This is also in vertex form: \[ f(x) = -1(x + 3)^2 - 1 \] - The maximum value is \( -1 \). - The value of \( x \) for which this maximum occurs is \( -3 \). ### d) \( -2(x - 1)^2 + 3 \) This is in vertex form as well: \[ f(x) = -2(x - 1)^2 + 3 \] - The maximum value is \( 3 \). - The value of \( x \) for which this maximum occurs is \( 1 \). ### Summary of Results - a) Maximum value: \( 4 \) at \( x = 0 \) - b) Maximum value: \( 5 \) at \( x = 2 \) - c) Maximum value: \( -1 \) at \( x = -3 \) - d) Maximum value: \( 3 \) at \( x = 1 \) These results provide the maximum values and corresponding \( x \) values for each quadratic expression.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine the maximum value of each quadratic expression, we can analyze the vertex of each parabola since they open downwards (as indicated by the negative leading coefficients). The maximum value occurs at the vertex. a) For the expression \(-x^{2}+4\): The vertex occurs at \(x=0\). The maximum value is: \[ -x^2 + 4 \Rightarrow -0^2 + 4 = 4. \] So, the maximum value is \(4\) at \(x=0\). b) For the expression \(-(x-2)^{2}+5\): The vertex occurs at \(x=2\). The maximum value is: \[ -(x-2)^2 + 5 \Rightarrow -(0)^2 + 5 = 5. \] So, the maximum value is \(5\) at \(x=2\). c) For the expression \(-(x+3)^{2}-1\): The vertex occurs at \(x=-3\). The maximum value is: \[ -(x+3)^2 - 1 \Rightarrow -0 - 1 = -1. \] So, the maximum value is \(-1\) at \(x=-3\). d) For the expression \(-2(x-1)^{2}+3\): The vertex occurs at \(x=1\). The maximum value is: \[ -2(x-1)^2 + 3 \Rightarrow -2(0)^2 + 3 = 3. \] So, the maximum value is \(3\) at \(x=1\). Here are the summarized results: a) Maximum value: \(4\) at \(x=0\) b) Maximum value: \(5\) at \(x=2\) c) Maximum value: \(-1\) at \(x=-3\) d) Maximum value: \(3\) at \(x=1\)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad