2. Determine the maximum value of each quadratic expression below, and the value of \( x \) for which this maximum value exists: \( \begin{array}{ll}\text { a) }-x^{2}+4 & \text { b) }-(x-2)^{2}+5 \\ \text { c) }-(x+3)^{2}-1 & \text { d) }-2(x-1)^{2}+3\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To determine the maximum value of each quadratic expression, we can analyze the vertex of each parabola since they open downwards (as indicated by the negative leading coefficients). The maximum value occurs at the vertex. a) For the expression \(-x^{2}+4\): The vertex occurs at \(x=0\). The maximum value is: \[ -x^2 + 4 \Rightarrow -0^2 + 4 = 4. \] So, the maximum value is \(4\) at \(x=0\). b) For the expression \(-(x-2)^{2}+5\): The vertex occurs at \(x=2\). The maximum value is: \[ -(x-2)^2 + 5 \Rightarrow -(0)^2 + 5 = 5. \] So, the maximum value is \(5\) at \(x=2\). c) For the expression \(-(x+3)^{2}-1\): The vertex occurs at \(x=-3\). The maximum value is: \[ -(x+3)^2 - 1 \Rightarrow -0 - 1 = -1. \] So, the maximum value is \(-1\) at \(x=-3\). d) For the expression \(-2(x-1)^{2}+3\): The vertex occurs at \(x=1\). The maximum value is: \[ -2(x-1)^2 + 3 \Rightarrow -2(0)^2 + 3 = 3. \] So, the maximum value is \(3\) at \(x=1\). Here are the summarized results: a) Maximum value: \(4\) at \(x=0\) b) Maximum value: \(5\) at \(x=2\) c) Maximum value: \(-1\) at \(x=-3\) d) Maximum value: \(3\) at \(x=1\)
