Solve for \( u \). \( \frac{-11 u}{u^{2}-u-30}-\frac{8}{u-6}=\frac{u}{u+5} \) If there is more than one solution, separate them with commas. If there is no solution, click on "No solution".
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To solve the equation \[ \frac{-11 u}{u^{2}-u-30}-\frac{8}{u-6}=\frac{u}{u+5}, \] we start by factoring the quadratic \(u^{2}-u-30\). This can be factored as \((u-6)(u+5)\). Now, substitute this back into the equation: \[ \frac{-11 u}{(u-6)(u+5)}-\frac{8}{u-6}=\frac{u}{u+5}. \] Next, find a common denominator for all terms. The common denominator is \((u-6)(u+5)\). Rewriting each term gives: \[ \frac{-11u}{(u-6)(u+5)} - \frac{8(u+5)}{(u-6)(u+5)} = \frac{u(u-6)}{(u-6)(u+5)}. \] Now combine the left side: \[ \frac{-11u - 8(u+5)}{(u-6)(u+5)} = \frac{u(u-6)}{(u-6)(u+5)}. \] This simplifies to: \[ \frac{-11u - 8u - 40}{(u-6)(u+5)} = \frac{u^2 - 6u}{(u-6)(u+5)}. \] Combine the left side: \[ \frac{-19u - 40}{(u-6)(u+5)} = \frac{u^2 - 6u}{(u-6)(u+5)}. \] Since both sides have the same denominator, we can set the numerators equal: \[ -19u - 40 = u^2 - 6u. \] Rearranging gives: \[ u^2 + 13u + 40 = 0. \] Next, we factor the quadratic: \[ (u + 8)(u + 5) = 0. \] This gives us the solutions: \[ u + 8 = 0 \quad \Rightarrow \quad u = -8, \] \[ u + 5 = 0 \quad \Rightarrow \quad u = -5. \] We need to check for any restrictions from denominators. The values \( u = 6 \) and \( u = -5 \) would make the denominators zero. Thus, we exclude \( u = -5 \). Therefore, the valid solution is: \[ u = -8. \]
