Simplify. \( \left(2 w^{-2} x^{4}\right)^{-4} \) Write your answer using only positive exponents.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To simplify \( \left(2 w^{-2} x^{4}\right)^{-4} \), we start by applying the property of exponents that states \( (a^m)^n = a^{m \cdot n} \). Thus, we can distribute the exponent \(-4\) to each part inside the parentheses: \[ \left(2 w^{-2} x^{4}\right)^{-4} = 2^{-4} w^{-2 \cdot -4} x^{4 \cdot -4} \] Now simplify each term: \[ 2^{-4} = \frac{1}{2^4} = \frac{1}{16}, \quad w^{-2 \cdot -4} = w^{8}, \quad x^{4 \cdot -4} = x^{-16} \] Bringing it all together, we have: \[ \left(2 w^{-2} x^{4}\right)^{-4} = \frac{1}{16} w^{8} x^{-16} \] To express with only positive exponents, we rewrite \( x^{-16} \) as \( \frac{1}{x^{16}} \): \[ = \frac{w^{8}}{16 x^{16}} \] Thus, the simplified expression is \[ \frac{w^{8}}{16 x^{16}} \]
