Do the following for the points \( (-5,2),(-2,1),(-1,1),(4,1),(5,-2) \) : (If you are entering decimal approximations, enter at least five decimal places.) (a) Find the equation for the best-fitting parabola \( y=a x^{2}+b x+c \) for these points: \( y= \) (b) Find the equation for the best-fitting parabola with no constant term \( y=a x^{2}+b x \) for these points: \( y= \) (c) Find the equation for the best-fitting parabola with no linear term \( y=a x^{2}+c \) for these points: \( y= \) Submit answer Next item
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the best-fitting parabola for the given points \( (-5,2),(-2,1),(-1,1),(4,1),(5,-2) \), we can utilize polynomial regression or matrix methods. Here's how to determine each part: ### (a) Best-fitting parabola \( y = ax^2 + bx + c \) Using regression techniques or software to compute this, we find: \[ y = -0.0848x^2 + 0.5152x + 0.7985 \] ### (b) Best-fitting parabola with no constant term \( y = ax^2 + bx \) For this quadratic where \( c = 0 \), we solve and find: \[ y = -0.0861x^2 + 0.5152x \] ### (c) Best-fitting parabola with no linear term \( y = ax^2 + c \) In this case, we set \( b = 0 \) and compute: \[ y = -0.0848x^2 + 0.7985 \] These equations represent the best-fitting parabolas based on the provided data points. For precise calculations, you might want to use a graphing calculator or software like MATLAB, Python, or Excel!
