Pregunta
upstudy study bank question image url

Evaluate the integral below by interpreting it in terms of areas. In other words, draw a picture of the region the integral represents, and find the area using high school geometry. \( \int_{-5}^{5} \sqrt{25-x^{2}} d x= \)

Ask by Hodges Hodgson. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The integral represents the area of the upper half of a circle with radius 5. The area is half of the full circle's area, which is \( \frac{25\pi}{2} \).

Solución

We start with the integral   ∫₋₅⁵ √(25 – x²) dx. Notice that y = √(25 – x²) represents the upper half of the circle described by   x² + y² = 25. This circle has a radius of 5 and is centered at the origin. The complete circle has an area of   Area = π · (5)² = 25π. Since y = √(25 – x²) is just the top half of the circle, the area under this curve from x = -5 to x = 5 is exactly half the area of the full circle. Therefore, the value of the integral is   (1/2) · 25π = (25π)/2.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To evaluate the integral \(\int_{-5}^{5} \sqrt{25 - x^2} \, dx\), we first recognize that the integrand \(\sqrt{25 - x^2}\) represents the equation of a circle. Specifically, it describes the upper half of a circle with a radius of 5 centered at the origin, since it can be rewritten as \(y = \sqrt{25 - x^2}\). Now, imagine the circle on the coordinate plane. The area we are interested in is the area of the semicircle above the x-axis, bounded by the x-values from -5 to 5. The area of a full circle is given by the formula \(A = \pi r^2\). For a circle of radius 5, the area would be: \[ A = \pi (5^2) = 25\pi. \] Since we are only interested in the upper half of the circle (the semicircle), we divide this area by 2: \[ \text{Area of semicircle} = \frac{25\pi}{2}. \] Thus, the value of the integral \(\int_{-5}^{5} \sqrt{25 - x^2} \, dx\) is \(\frac{25\pi}{2}\).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad