Pregunta
upstudy study bank question image url

How much would you need to deposit in an account now in order to have \( \$ 6000 \) in the account in 15 years? Assume the account earns \( 6 \% \) interest compounded quarterly. Round your answer to the nearest cent.

Ask by Gardner Coles. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

You need to deposit approximately \$2,453.50 now to have \$6,000 in 15 years with 6% interest compounded quarterly.

Solución

To solve, use the present value formula for compound interest:   P = A / (1 + r/n)^(n*t) where:   A = future value = $6000   r = annual interest rate = 6% = 0.06   n = number of compounding periods per year = 4 (quarterly)   t = number of years = 15 Plug in the values:   P = 6000 / (1 + 0.06/4)^(4*15)    = 6000 / (1.015)^60 Calculating (1.015)^60:   (1.015)^60 ≈ 2.44399 Now, compute P:   P ≈ 6000 / 2.44399 ≈ 2453.50 So, you would need to deposit approximately $2,453.50 today.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find out how much you need to deposit now to reach \( \$6000 \) in 15 years with a quarterly compounded interest rate of \( 6\% \), you can use the formula for compound interest: \[ P = \frac{A}{(1 + r/n)^{nt}} \] Where: - \( A = 6000 \) (the amount you want in the future) - \( r = 0.06 \) (annual interest rate) - \( n = 4 \) (number of times interest is compounded per year) - \( t = 15 \) (number of years) Plugging in the values, we have: \[ P = \frac{6000}{(1 + 0.06/4)^{4 \times 15}} \] Calculating this step by step: 1. \( r/n = 0.06/4 = 0.015 \) 2. \( nt = 4 \times 15 = 60 \) 3. \( (1 + 0.015)^{60} = (1.015)^{60} \approx 2.4596 \) Now substitute all this back into the equation: \[ P = \frac{6000}{2.4596} \approx 2438.58 \] Therefore, you would need to deposit approximately \( \$2438.58 \) now to have \( \$6000 \) in 15 years.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad