Pregunta
upstudy study bank question image url

(1 point) The total cost (in hundreds of dollars) of producing \( x \) slide rules per day is \[ C(x)=8+\sqrt{2 x+18} \] Find the marginal cost at each production level \( x \) given below: \[ \begin{array}{l} x=25 \\ x=43 \end{array} \]

Ask by Dunn Gonzalez. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The marginal cost at each production level is: - At \( x = 25 \): \( \frac{1}{2\sqrt{17}} \) hundred dollars per slide rule (approximately \$0.121 per slide rule) - At \( x = 43 \): \( \frac{1}{2\sqrt{26}} \) hundred dollars per slide rule (approximately \$0.098 per slide rule)

Solución

We are given the cost function   C(x) = 8 + √(2x + 18), where C(x) is in hundreds of dollars and x is the number of slide rules produced per day. To find the marginal cost, we need the derivative C′(x) with respect to x. Step 1. Differentiate C(x):   C(x) = 8 + √(2x + 18). Since the derivative of a constant is 0, we only differentiate √(2x + 18). Using the chain rule:   d/dx [√(2x + 18)] = (1 / (2√(2x+18))) * (d/dx (2x+18)).   The derivative d/dx (2x + 18) = 2. Thus,   C′(x) = 2 / (2√(2x + 18)) = 1 / √(2x + 18). Step 2. Evaluate the derivative at the given production levels. 1. For x = 25:   C′(25) = 1 / √(2(25) + 18) = 1 / √(50 + 18) = 1 / √68. You can simplify √68 as 2√17 since 68 = 4 · 17. So,   C′(25) = 1 / (2√17). 2. For x = 43:   C′(43) = 1 / √(2(43) + 18) = 1 / √(86 + 18) = 1 / √104. Similarly, √104 can be expressed as 2√26 because 104 = 4 · 26. So,   C′(43) = 1 / (2√26). Thus, the marginal cost is:   At x = 25: 1/(2√17) hundred dollars per slide rule (which is approximately 0.121 hundred dollars per slide rule).   At x = 43: 1/(2√26) hundred dollars per slide rule (which is approximately 0.098 hundred dollars per slide rule). These values represent the approximate increase in the daily production cost (in hundreds of dollars) for one additional slide rule at the respective production levels.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the marginal cost, we first need to compute the derivative of the total cost function \( C(x) \). The total cost function is given by: \[ C(x) = 8 + \sqrt{2x + 18} \] The marginal cost \( C'(x) \) is the derivative of \( C(x) \). Let's differentiate: 1. The derivative of the constant \( 8 \) is \( 0 \). 2. For the term \( \sqrt{2x + 18} \), we use the chain rule. The derivative is: \[ C'(x) = \frac{1}{2\sqrt{2x + 18}} \cdot (2) = \frac{1}{\sqrt{2x + 18}} \] Now we can compute the marginal cost at the specified production levels. **At \( x = 25 \):** \[ C'(25) = \frac{1}{\sqrt{2(25) + 18}} = \frac{1}{\sqrt{50 + 18}} = \frac{1}{\sqrt{68}} = \frac{1}{\sqrt{4 \cdot 17}} = \frac{1}{2\sqrt{17}} \] Calculating \( \sqrt{17} \approx 4.123 \), we get: \[ C'(25) \approx \frac{1}{2 \cdot 4.123} \approx \frac{1}{8.246} \approx 0.121 \] Since the cost function is in hundreds of dollars, the marginal cost at \( x = 25 \) is approximately \( 0.121 \times 100 \approx 12.1 \) dollars. **At \( x = 43 \):** \[ C'(43) = \frac{1}{\sqrt{2(43) + 18}} = \frac{1}{\sqrt{86 + 18}} = \frac{1}{\sqrt{104}} = \frac{1}{\sqrt{4 \cdot 26}} = \frac{1}{2\sqrt{26}} \] Calculating \( \sqrt{26} \approx 5.099 \), we get: \[ C'(43) \approx \frac{1}{2 \cdot 5.099} \approx \frac{1}{10.198} \approx 0.098 \] Again, converting to dollars, the marginal cost at \( x = 43 \) is approximately \( 0.098 \times 100 \approx 9.8 \) dollars. In summary: - The marginal cost at \( x = 25 \) is approximately **$12.10**. - The marginal cost at \( x = 43 \) is approximately **$9.80**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad