Pregunta
upstudy study bank question image url

Given the system of equations, what is the solution? \( \begin{array}{l}3 x-2 y+10=0 \\ 5 y=4 x+8 \\ \{(-34 / 7,-16 / 7)\} \\ \{(-34 / 7,16 / 7)\} \\ \{(34 / 7,-16 / 7)\}\end{array} \)

Ask by Moran Ayala. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions are \( x = -\frac{34}{7} \) and \( y = -\frac{16}{7} \).

Solución

Solve the system of equations \( 3x-2y+10=0;5y=4x+8 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}3x-2y+10=0\\5y=4x+8\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}x=\frac{2y-10}{3}\\5y=4x+8\end{array}\right.\) - step2: Substitute the value of \(x:\) \(5y=4\times \frac{2y-10}{3}+8\) - step3: Simplify: \(5y=\frac{4\left(2y-10\right)}{3}+8\) - step4: Multiply both sides of the equation by LCD: \(5y\times 3=\left(\frac{4\left(2y-10\right)}{3}+8\right)\times 3\) - step5: Simplify the equation: \(15y=8y-16\) - step6: Move the variable to the left side: \(15y-8y=-16\) - step7: Subtract the terms: \(7y=-16\) - step8: Divide both sides: \(\frac{7y}{7}=\frac{-16}{7}\) - step9: Divide the numbers: \(y=-\frac{16}{7}\) - step10: Substitute the value of \(y:\) \(x=\frac{2\left(-\frac{16}{7}\right)-10}{3}\) - step11: Calculate: \(x=-\frac{34}{7}\) - step12: Calculate: \(\left\{ \begin{array}{l}x=-\frac{34}{7}\\y=-\frac{16}{7}\end{array}\right.\) - step13: Check the solution: \(\left\{ \begin{array}{l}x=-\frac{34}{7}\\y=-\frac{16}{7}\end{array}\right.\) - step14: Rewrite: \(\left(x,y\right) = \left(-\frac{34}{7},-\frac{16}{7}\right)\) The solution to the system of equations is \( (x,y) = (-\frac{34}{7},-\frac{16}{7}) \) or \( (x,y) = (-4.857142, -2.285714) \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the system of equations, let's first rearrange both equations to make them easier to work with. 1. The first equation can be rearranged as: \( 3x - 2y = -10 \) or \( 3x = 2y - 10 \). 2. The second equation is: \( 5y = 4x + 8 \) or \( 5y - 4x = 8 \). Now we can solve for one variable in terms of the other. Let's solve the first equation for \(y\): \[ 2y = 3x + 10 \implies y = \frac{3}{2} x + 5. \] Next, substitute this expression for \(y\) into the second equation: \[ 5\left(\frac{3}{2} x + 5\right) - 4x = 8. \] Expanding this gives: \[ \frac{15}{2} x + 25 - 4x = 8. \] To eliminate the fraction, we can multiply the entire equation by 2: \[ 15x + 50 - 8x = 16 \implies 7x + 50 = 16 \implies 7x = -34 \implies x = -\frac{34}{7}. \] Now, plug \(x\) back into the equation for \(y\): \[ y = \frac{3}{2} \left(-\frac{34}{7}\right) + 5 = -\frac{102}{14} + 5 = -\frac{102}{14} + \frac{70}{14} = -\frac{32}{14} = -\frac{16}{7}. \] So the solution to the system of equations is: \[ \boxed{\left(-\frac{34}{7}, -\frac{16}{7}\right)}. \] It appears that option \( \{(-34 / 7,-16 / 7)\} \) is indeed the correct choice!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad