Angie mailed a letter on Monday morning. The letter traveled \( 33 / 8 \) miles on Monday. It traveled \( 11 / 2 \) more miles on Tuesday, reaching its destination on Tuesday afternoon. How far did Angie's letter travel in all? Write your answer as a fraction or as a whole or mixed number.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To find the total distance Angie's letter traveled, we need to add the distances it traveled on Monday and Tuesday. On Monday, the letter traveled \( \frac{33}{8} \) miles. On Tuesday, it traveled \( \frac{11}{2} \) miles, which we can convert to a fraction with the same denominator as \( \frac{33}{8} \). The fraction \( \frac{11}{2} \) is equivalent to \( \frac{44}{8} \) when we multiply both the numerator and the denominator by 4. Now, we can add these two distances together: \[ \frac{33}{8} + \frac{44}{8} = \frac{33 + 44}{8} = \frac{77}{8} \] We can convert \( \frac{77}{8} \) into a mixed number. Dividing 77 by 8 gives us 9 with a remainder of 5, so: \[ \frac{77}{8} = 9 \frac{5}{8} \] Thus, Angie's letter traveled a total of \( 9 \frac{5}{8} \) miles.
