12. \( (a 7-g 6-17) 2 \cos 55^{\circ} \cdot \cos 40^{\circ} \cdot \sin 55^{\circ}+ \) \( +\cos 110^{\circ} \cdot \sin 40^{\circ} \) ifodani soddalashtiring. \( \begin{array}{llll}\text { A) } \frac{1}{2} & \text { B) } \frac{\sqrt{3}}{2} & \text { C) }-\frac{\sqrt{3}}{2} & \text { D) } \sin 70^{\circ}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
Buni soddalashtirish uchun, berilgan ifodaning trigonometric o'zgaruvchilarini qo'llanishimiz mumkin. Birinchi qismda \(2 \cos 55^{\circ} \cdot \cos 40^{\circ} \cdot \sin 55^{\circ}\) ni ko’rib chiqaylik. Bu tenglama trigonometrik identitiyalarga asoslangan holda \( \sin(55+40) = \sin 95^{\circ} = \cos 15^{\circ} \) ni beradi. Ikkinchi qismda \( \cos 110^{\circ} \cdot \sin 40^{\circ} \) ni qayta ko’rib chiqamiz. Bu \( \cos(110^{\circ}) = -\sin(20^{\circ})\) formulasiidan foydalansak, butun ifodani bir-biriga qo’shganimizda natija beradi. Nikohni soddalashganimizda, natijaviy ifoda \( \sin 70^{\circ} \) ga teng bo’ladi. Shunday qilib, dastlabki hisoblashingiz aslida D varianti bilangidir. Demak, javob: D) \( \sin 70^{\circ} \) .
