Pregunta
upstudy study bank question image url

\( A = \int _ { 2 } ^ { 5 } 2 x - 3 d x = \)

Ask by Zimmerman Smith. in Colombia
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

La integral de \(2x - 3\) desde 2 hasta 5 es igual a 12.

Solución

Calculate or simplify the expression \( \int_{2}^{5} 2x-3dx \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int_{2}^{5} \left(2x-3\right) dx\) - step1: Evaluate the integral: \(\int \left(2x-3\right) dx\) - step2: Use properties of integrals: \(\int 2x dx+\int -3 dx\) - step3: Evaluate the integral: \(x^{2}+\int -3 dx\) - step4: Evaluate the integral: \(x^{2}-3x\) - step5: Return the limits: \(\left(x^{2}-3x\right)\bigg |_{2}^{5}\) - step6: Calculate the value: \(12\) La integral de \(2x - 3\) desde 2 hasta 5 es igual a 12.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To compute the integral \( A = \int _ { 2 } ^ { 5 } (2x - 3) \, dx \), we start by finding the antiderivative of the function \( 2x - 3 \), which is \( x^2 - 3x \). Now we evaluate this from 2 to 5: \[ A = \left[ x^2 - 3x \right] _{2}^{5} = \left( 5^2 - 3 \cdot 5 \right) - \left( 2^2 - 3 \cdot 2 \right) = (25 - 15) - (4 - 6) = 10 + 2 = 12. \] So, the value of the integral \( A \) is 12. In the world of calculus, understanding the concept of integration allows us not just to find areas under curves but to delve into more complex applications like calculating total distance from velocity functions! It's fascinating how a simple equation can unlock the secrets of nature, from physics to economics. Don’t let the fear of making mistakes in integration loom over you! A common pitfall is neglecting to apply the limits correctly or mistakenly calculating the antiderivative. Always double-check your work and remember that practice makes perfect, so grab a stack of integrals and start integrating your way to mastery!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad