Question Use the square roots property to solve the quadratic equation \( (2 q+1)^{2}=9 \). If there are multiple answers, list them separated by a comma, e.g. 1, 2. If there is no solution, enter \( \varnothing \).
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To solve the equation \( (2q + 1)^{2} = 9 \), we can use the square roots property. We take the square root of both sides: 1. \( 2q + 1 = 3 \) 2. \( 2q + 1 = -3 \) Now, let's solve both equations separately. For the first equation: \[ 2q + 1 = 3 \] Subtracting 1 from both sides gives us: \[ 2q = 2 \] Dividing both sides by 2 gives us: \[ q = 1 \] For the second equation: \[ 2q + 1 = -3 \] Subtracting 1 from both sides gives us: \[ 2q = -4 \] Dividing both sides by 2 gives us: \[ q = -2 \] Therefore, the solutions are \( 1, -2 \).
