Given: \( f(x)=\frac{3 x-2}{x^{2}+10 x+25} \) Determine the values of \( x \) for which \( f(x) \) is defined
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To determine the values of \( x \) for which the function \( f(x) = \frac{3x - 2}{x^2 + 10x + 25} \) is defined, we need to identify where the denominator does not equal zero. The denominator can be factored as \( x^2 + 10x + 25 = (x + 5)^2 \). This expression is equal to zero when \( x + 5 = 0 \), which means \( x = -5 \). Therefore, \( f(x) \) is undefined at \( x = -5 \). In conclusion, \( f(x) \) is defined for all real numbers except \( x = -5 \).
