Pregunta
upstudy study bank question image url

\( \begin{array}{l}y=\frac{1}{4} x+7 \\ y=\frac{1}{2} x+5\end{array} \) The \( y \)-coordinate of the solution to the system shown is \( 11 \frac{1}{2} \) 9

Ask by Mills Rowe. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The y-coordinate of the solution is 9.

Solución

We are given the system of equations:   y = (1/4)x + 7   y = (1/2)x + 5 To find the y-coordinate of the solution, we first find x by setting the two expressions for y equal to each other:   (1/4)x + 7 = (1/2)x + 5 Subtract (1/4)x from both sides:   7 = (1/2)x - (1/4)x + 5 Subtract 5 from both sides:   2 = (1/2)x - (1/4)x Combine the x terms by finding a common denominator:   (1/2)x - (1/4)x = (2/4)x - (1/4)x = (1/4)x So the equation becomes:   2 = (1/4)x Multiply both sides by 4 to solve for x:   x = 8 Now substitute x = 8 into either of the original equations. Using the first equation:   y = (1/4)(8) + 7   y = 2 + 7   y = 9 Therefore, the y-coordinate of the solution to the system is 9.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the system of equations, we can set the two equations equal to each other since they both equal \( y \): \[ \frac{1}{4} x + 7 = \frac{1}{2} x + 5 \] Rearranging the equation gives: \[ 7 - 5 = \frac{1}{2} x - \frac{1}{4} x \] This simplifies to: \[ 2 = \left(\frac{1}{2} - \frac{1}{4}\right) x = \frac{1}{4} x \] Multiplying both sides by 4 yields \( x = 8 \). Now, substitute \( x = 8 \) back into either equation to find \( y \). Using the first equation: \[ y = \frac{1}{4}(8) + 7 = 2 + 7 = 9 \] So the \( y \)-coordinate of the solution to the system is 9. Now, let's spice things up with some fun facts! Did you know that the method of solving systems of linear equations dates back to ancient civilizations like the Babylonians? They used strategies to meticulously solve these kinds of problems! Imagining them drawing on clay tablets makes you appreciate the simplicity of combining equations today. For real-world applications, systems of equations are everywhere! They're used in fields like economics to find equilibrium points in markets, in engineering to analyze forces in structures, and even in ecology for modeling population dynamics. So, the next time you work with these equations, think about their vital role in real-life decision-making and problem-solving!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad