Responder
The final result is \( 118945 - 2e^{-x} \).
Solución
Evaluate the limit by following steps:
- step0: Evaluate using L'Hopital's rule:
\(\lim _{x\rightarrow 0}\left(\frac{-\ln{\left(1+7\left(e^{-x}-1\right)\right)}}{x}\right)\)
- step1: Add the terms:
\(\lim _{x\rightarrow 0}\left(\frac{-\ln{\left(-6+7e^{-x}\right)}}{x}\right)\)
- step2: Use the L'Hopital's rule:
\(\lim _{x\rightarrow 0}\left(\frac{\frac{d}{dx}\left(-\ln{\left(-6+7e^{-x}\right)}\right)}{\frac{d}{dx}\left(x\right)}\right)\)
- step3: Find the derivative:
\(\lim _{x\rightarrow 0}\left(\frac{-\frac{7}{6e^{x}-7}}{1}\right)\)
- step4: Simplify the expression:
\(\lim _{x\rightarrow 0}\left(\frac{-7}{6e^{x}-7}\right)\)
- step5: Rewrite the expression:
\(\frac{-7}{\lim _{x\rightarrow 0}\left(6e^{x}-7\right)}\)
- step6: Calculate:
\(\frac{-7}{-1}\)
- step7: Divide the terms:
\(7\)
Calculate or simplify the expression \( (1*2*3)^{4} \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(1\times 2\times 3\right)^{4}\)
- step1: Multiply the terms:
\(6^{4}\)
- step2: Evaluate the power:
\(1296\)
Calculate or simplify the expression \( 1296 - 2 * e^{-x} \).
Simplify the expression by following steps:
- step0: Solution:
\(1296-2e^{-x}\)
Calculate or simplify the expression \( (7)^{6} + (1296 - 2e^{-x}) \).
Simplify the expression by following steps:
- step0: Solution:
\(7^{6}+\left(1296-2e^{-x}\right)\)
- step1: Remove the parentheses:
\(7^{6}+1296-2e^{-x}\)
Let's break down the problem step by step.
1. **Limit Calculation**:
We need to evaluate the limit:
\[
\lim_{x \rightarrow 0} \frac{-\ln(1 + 7(e^{-x} - 1))}{x}
\]
As \( x \) approaches 0, \( e^{-x} \) approaches 1. Therefore, \( e^{-x} - 1 \) approaches 0. This means we can simplify the expression inside the logarithm:
\[
1 + 7(e^{-x} - 1) \rightarrow 1 + 7(0) = 1
\]
Thus, the limit becomes:
\[
\lim_{x \rightarrow 0} \frac{-\ln(1)}{x} = \lim_{x \rightarrow 0} \frac{0}{x} = 0
\]
However, we need to evaluate it more carefully using L'Hôpital's Rule since it is in the indeterminate form \( \frac{0}{0} \).
Applying L'Hôpital's Rule:
\[
\text{Differentiate the numerator and denominator:}
\]
The derivative of the numerator \( -\ln(1 + 7(e^{-x} - 1)) \) is:
\[
-\frac{7(-e^{-x})}{1 + 7(e^{-x} - 1)} = \frac{7e^{-x}}{1 + 7(e^{-x} - 1)}
\]
The derivative of the denominator \( x \) is \( 1 \).
Thus, we have:
\[
\lim_{x \rightarrow 0} \frac{7e^{-x}}{1 + 7(e^{-x} - 1)} = \frac{7 \cdot 1}{1 + 7(0)} = 7
\]
2. **Product Calculation**:
Next, we calculate:
\[
\prod_{k=1}^{3} k = 1 \cdot 2 \cdot 3 = 6
\]
Raising this to the power of 4:
\[
(6)^{4} = 1296
\]
3. **Final Expression**:
Now we combine everything:
\[
(7)^{6} + (1296 - 2e^{-x})
\]
We know \( 7^6 = 117649 \). Therefore, the final expression becomes:
\[
117649 + 1296 - 2e^{-x} = 118945 - 2e^{-x}
\]
Thus, the final result is:
\[
118945 - 2e^{-x}
\]
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución