Pregunta
upstudy study bank question image url

\( ( \lim _ { x \rightarrow 0 } \frac { - \ln ( 1 + 7 ( e ^ { - x } - 1 ) ) } { x } ) ^ { 6 } + ( ( \prod _ { = 1 } ^ { 3 } k ) ^ { 4 } + - 2 \operatorname { mng } e ^ { - x } ) \)

Ask by Gordon Chadwick. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The final result is \( 118945 - 2e^{-x} \).

Solución

Evaluate the limit by following steps: - step0: Evaluate using L'Hopital's rule: \(\lim _{x\rightarrow 0}\left(\frac{-\ln{\left(1+7\left(e^{-x}-1\right)\right)}}{x}\right)\) - step1: Add the terms: \(\lim _{x\rightarrow 0}\left(\frac{-\ln{\left(-6+7e^{-x}\right)}}{x}\right)\) - step2: Use the L'Hopital's rule: \(\lim _{x\rightarrow 0}\left(\frac{\frac{d}{dx}\left(-\ln{\left(-6+7e^{-x}\right)}\right)}{\frac{d}{dx}\left(x\right)}\right)\) - step3: Find the derivative: \(\lim _{x\rightarrow 0}\left(\frac{-\frac{7}{6e^{x}-7}}{1}\right)\) - step4: Simplify the expression: \(\lim _{x\rightarrow 0}\left(\frac{-7}{6e^{x}-7}\right)\) - step5: Rewrite the expression: \(\frac{-7}{\lim _{x\rightarrow 0}\left(6e^{x}-7\right)}\) - step6: Calculate: \(\frac{-7}{-1}\) - step7: Divide the terms: \(7\) Calculate or simplify the expression \( (1*2*3)^{4} \). Calculate the value by following steps: - step0: Calculate: \(\left(1\times 2\times 3\right)^{4}\) - step1: Multiply the terms: \(6^{4}\) - step2: Evaluate the power: \(1296\) Calculate or simplify the expression \( 1296 - 2 * e^{-x} \). Simplify the expression by following steps: - step0: Solution: \(1296-2e^{-x}\) Calculate or simplify the expression \( (7)^{6} + (1296 - 2e^{-x}) \). Simplify the expression by following steps: - step0: Solution: \(7^{6}+\left(1296-2e^{-x}\right)\) - step1: Remove the parentheses: \(7^{6}+1296-2e^{-x}\) Let's break down the problem step by step. 1. **Limit Calculation**: We need to evaluate the limit: \[ \lim_{x \rightarrow 0} \frac{-\ln(1 + 7(e^{-x} - 1))}{x} \] As \( x \) approaches 0, \( e^{-x} \) approaches 1. Therefore, \( e^{-x} - 1 \) approaches 0. This means we can simplify the expression inside the logarithm: \[ 1 + 7(e^{-x} - 1) \rightarrow 1 + 7(0) = 1 \] Thus, the limit becomes: \[ \lim_{x \rightarrow 0} \frac{-\ln(1)}{x} = \lim_{x \rightarrow 0} \frac{0}{x} = 0 \] However, we need to evaluate it more carefully using L'Hôpital's Rule since it is in the indeterminate form \( \frac{0}{0} \). Applying L'Hôpital's Rule: \[ \text{Differentiate the numerator and denominator:} \] The derivative of the numerator \( -\ln(1 + 7(e^{-x} - 1)) \) is: \[ -\frac{7(-e^{-x})}{1 + 7(e^{-x} - 1)} = \frac{7e^{-x}}{1 + 7(e^{-x} - 1)} \] The derivative of the denominator \( x \) is \( 1 \). Thus, we have: \[ \lim_{x \rightarrow 0} \frac{7e^{-x}}{1 + 7(e^{-x} - 1)} = \frac{7 \cdot 1}{1 + 7(0)} = 7 \] 2. **Product Calculation**: Next, we calculate: \[ \prod_{k=1}^{3} k = 1 \cdot 2 \cdot 3 = 6 \] Raising this to the power of 4: \[ (6)^{4} = 1296 \] 3. **Final Expression**: Now we combine everything: \[ (7)^{6} + (1296 - 2e^{-x}) \] We know \( 7^6 = 117649 \). Therefore, the final expression becomes: \[ 117649 + 1296 - 2e^{-x} = 118945 - 2e^{-x} \] Thus, the final result is: \[ 118945 - 2e^{-x} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Here's a bit of historical context: Limits and logarithms have been fundamental concepts in mathematics for centuries, laying the groundwork for calculus and analysis. Renowned mathematicians like Augustin-Louis Cauchy and Karl Weierstrass helped formalize these ideas in the 19th century, making them essential tools for understanding continuous functions and their behaviors. Their work paved the way for modern mathematical analysis, fostering innovation in science and engineering. Now, let’s talk applications! Understanding limits is crucial in many real-world situations, especially in physics and engineering, where they help describe phenomena like motion, thermodynamics, and even electrical circuits. For example, in velocity calculations, limits help determine instantaneous rates of change, allowing engineers to design safer cars and better buildings. Mastering this concept will not only boost your math skills but also give you a leg up in scientific fields!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad