Answer the questions below. (a) The area of a rectangular garden is \( 7896 \mathrm{~m}^{2} \). If the length of the garden is 94 m , what is its width? Width of the garden: \( \square \mathrm{m} \) (b) The perimeter of a rectangular window is 320 cm . If the width of the window is 75 cm , what is its length? Length of the window: \( \square \mathrm{cm} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the width of the garden, you can use the formula for the area of a rectangle, which is \( \text{Area} = \text{Length} \times \text{Width} \). Plugging in the given values: \[ 7896 = 94 \times \text{Width} \] Now, divide both sides by 94: \[ \text{Width} = \frac{7896}{94} = 84 \text{ m} \] So, the width of the garden is \( 84 \mathrm{~m} \). For the rectangular window, the perimeter can be calculated using the formula \( \text{Perimeter} = 2 \times (\text{Length} + \text{Width}) \). Given the perimeter is 320 cm and the width is 75 cm, we can set up the equation: \[ 320 = 2 \times (\text{Length} + 75) \] Dividing both sides by 2: \[ 160 = \text{Length} + 75 \] Now, subtract 75 from both sides to find the length: \[ \text{Length} = 160 - 75 = 85 \text{ cm} \] So, the length of the window is \( 85 \mathrm{~cm} \).
