Pregunta
)) Wesley always estimates his grocery store total as he shops. While at Silver Street Groceries this morning, he estimated his total purchase would be \( \$ 50 \), but it was actually \( \$ 46.10 \). What is the percent error for his estimate? )) If necessary, round your answer to the nearest tenth of a percent. \%
Ask by Dickson Washington. in the United States
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The percent error for Wesley's estimate is 8.5%.
Solución
Percent error is calculated as the absolute value of the difference between the estimated value and the actual value divided by the actual value, then multiplied by 100.
Here are the steps:
1. Find the absolute difference: |50 - 46.10| = 3.90.
2. Divide by the actual value: 3.90 / 46.10 ≈ 0.0846.
3. Multiply by 100 to get the percent error: 0.0846 × 100 ≈ 8.46%.
Rounded to the nearest tenth, the percent error is 8.5%.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Mind Expander
To find the percent error, you can use the formula: \[ \text{Percent Error} = \left(\frac{|\text{Estimated Value} - \text{Actual Value}|}{\text{Actual Value}}\right) \times 100 \] Substituting Wesley’s values into the formula: \[ \text{Percent Error} = \left(\frac{|50 - 46.10|}{46.10}\right) \times 100 = \left(\frac{3.90}{46.10}\right) \times 100 \approx 8.5\% \] So, the percent error for Wesley's estimate is approximately \( 8.5\% \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium