Pregunta
upstudy study bank question image url

The number of potholes in any given 1 mile stretch of freeway pavement in Pennsylvania has a bell-shaped distribution. This distribution has a mean of 35 and a standard deviation of 9 . Using the empirical rule (as presented in the book), what is the approximate percentage of 1 - mile long roadways with potholes numbering between 26 and 62 ? Do not enter the percent symbol. ans =

Ask by Christensen Stuart. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

84

Solución

We are given that the number of potholes on a 1‑mile stretch of freeway pavement is bell-shaped (approximately normal) with a mean (μ) of 35 and a standard deviation (σ) of 9. The question asks for the approximate percentage of roadways having a pothole count between 26 and 62. Step 1: Convert the endpoints of the range to z-scores. • For the lower limit (26):   z = (26 – 35) / 9 = –9 / 9 = –1. • For the upper limit (62):   z = (62 – 35) / 9 = 27 / 9 = 3. Step 2: Apply the empirical rule. - The empirical rule states that about 68% of data lie within 1 standard deviation of the mean (i.e., between z = –1 and z = +1), about 95% lie within 2 standard deviations, and about 99.7% lie within 3 standard deviations. - The percentage below z = –1 is approximately 16% (since 50% – 34% ≈ 16%). - The percentage below z = 3 is approximately 99.85% (or nearly 100%). Thus, the percentage of observations between z = –1 and z = 3 is approximately:   99.85% – 16% ≈ 84%. Therefore, the approximate percentage of 1‑mile roadways with pothole counts between 26 and 62 is 84. Final Answer: 84

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the percentage of 1-mile long roadways with potholes numbering between 26 and 62 using the empirical rule, we first calculate how many standard deviations these numbers are from the mean. The mean is 35, and the standard deviation is 9. - For 26: (26 - 35) / 9 = -1 - For 62: (62 - 35) / 9 = 3 This means 26 is 1 standard deviation below the mean, and 62 is 3 standard deviations above the mean. According to the empirical rule, approximately 68% of the data falls within one standard deviation of the mean (between 26 and 44), and about 99.7% falls within three standard deviations (from 8 to 62). Thus, the approximate percentage of roadways with potholes numbering between 26 and 62 is 99.7. ans = 99.7

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad