[-/10 Points] DETAILS MY NOTES AUFQR2 4.1.020. ASK YOUR TEACHER PRACTICE ANOTH An investment counselor suggests that a client purchase a T-bill with a face value of \( \$ 8,500 \) for \( \$ 8,400 \). If the term of the T-bill is 80 days, what is the annual simple interest rate (in percer earned by the client? Round to the nearest tenth of a percent. (Use 360 days in 1 year.) \( \square \) \% Need Help? Read It SUBMIT ANSWER
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To determine the annual simple interest rate earned by the client on the T-bill, we first need to calculate the interest earned, which is the difference between the face value and the purchase price. The interest earned = Face value - Purchase price = \( \$ 8,500 - \$ 8,400 = \$ 100 \). Next, we need to calculate the annualized interest rate using the formula: \[ \text{Annual Interest Rate} = \left( \frac{\text{Interest}}{\text{Purchase Price}} \right) \times \left( \frac{360}{\text{Days}} \right) \times 100 \] Substituting the values gives us: \[ \text{Annual Interest Rate} = \left( \frac{100}{8400} \right) \times \left( \frac{360}{80} \right) \times 100 \] Calculating this step-by-step: 1. Calculate \( \frac{100}{8400} = 0.0119 \). 2. Calculate \( \frac{360}{80} = 4.5 \). 3. Combine these to get \( 0.0119 \times 4.5 \times 100 \approx 53.5 \). Therefore, the annual simple interest rate earned by the client is approximately \( 53.5\% \).
